Skip to main content

Apusomonadida

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

Apusomonadida is a small group of free-living heterotrophic flagellates. Apusomonads are small (~5–20 μm long) gliding aerobes with two flagella. The dorsal cell membrane is underlain by a pellicle, which also supports a “skirt” of folded membrane that extends laterally/ventrally. The anterior flagellum is enclosed by a sleeve-like extension of the skirt system, forming a flexible proboscis. Apusomonas itself is a rounded cell with an anterior extension, the mastigophore, that contains the flagellar apparatus. All other apusomonads (usually now assigned to the genera Amastigomonas, Chelonemonas, Manchomonas, Multimonas, Podomonas, and Thecamonas) are elongated and plastic and may form ventral pseudopodia. Apusomonas is a soil flagellate. Most other apusomonads that have been cultured to date are marine. Apusomonads are closely related to opisthokonts (e.g., animals and fungi), making them an important group for examining, for example, the origins of multicellularity. The genome of Thecamonas trahens encodes several proteins and pathways previously considered specific to animals, including much of the integrin system, which functions in cell-cell communication and adhesion in metazoa. This chapter also briefly reviews breviates and ancyromonads, two groups of surface-associating flagellates that are (or may be) closely related to apusomonads and are of similar evolutionary significance. Breviates comprise three genera of small (~10–15 μm long) anaerobic cells that produce fine pseudopodia. Ancyromonads (synonym planomonads) comprise four genera of tiny (~5 μm long) flattened cells with an inflexible pellicle underlying most of the cell membrane and a battery of extrusomes in a lateral rostrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Apusomonadida

  • Aléxéieff, A. (1924). Notes sur quelques protistes coprocoles. Archiv für Protistenkunde, 50, 27–49 [in French].

    Google Scholar 

  • al-Qassab, S., Lee, W. J., Murray, S., Simpson, A. G. B., & Patterson, D. J. (2002). Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozoologica, 41, 91–144.

    Google Scholar 

  • Arndt, H., Dietrich, D., Auer, B., Cleven, E.-J., Gräfenhan, T., Weitere, M., & Myľnikov, A. P. (2000). Functional diversity of heterotrophic flagellates in aquatic ecosystems. In B. S. C. Leadbeater & J. C. Green (Eds.), The flagellates: Unity, diversity and evolution (pp. 240–268). London: Taylor & Francis.

    Google Scholar 

  • Brown, M. B., Sharpe, S. C., Silberman, J. D., Heiss, A. A., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2013). Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proceedings of the Royal Society of London B, 280, 20131755.

    Article  CAS  Google Scholar 

  • Burki, F., Kaplan, M., Tikhonenkov, D. V., Zlatogursky, V., Minh, B. Q., Radaykina, L. V., Smirnov, A., Mylnikov, A. P., & Keeling, P. J. (2016). Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society of London B, 283, 20152802.

    Article  Google Scholar 

  • Cai, X. (2012). Ancient origin of four-domain voltage-gated Na + channels predates the divergence of animals and fungi. Journal of Membrane Biology, 245, 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., & Clapham, D. E. (2012). Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Molecular Biology and Evolution, 29, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Chen, F., Yang, X., Xu, W., Xie, J., & Yu, L. (2014). Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evolutionary Biology, 14, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Biology, 52, 297–354.

    CAS  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (1995). The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proceedings of the Royal Society of London B, 261, 1–6.

    Article  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (2003). Phylogeny of Choanozoa, Apusozoa, and other Protozoa and early eukaryote mega evolution. Journal of Molecular Evolution, 56, 540–563.

    Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (2010). Phylogeny and evolution of Apusomonadida (Protozoa: Apusozoa): New genera and species. Protist, 161, 549–576.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E. Y., & Oates, B. (2004). Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. European Journal of Protistology, 40, 21–48.

    Article  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., Snell, E. A., Berney, C., Fiore-Donno, A. M., & Lewis, R. (2014). Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution, 81, 71–85.

    Article  PubMed  Google Scholar 

  • de Saedeleer, H. (1931). Niewe of weinig bekende Flagellaten. Natuurwetenschappelijk Tijdschrift, 13, 89–97 [in Dutch].

    Google Scholar 

  • Derelle, R., & Lang, B. F. (2012). Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Molecular Biology and Evolution, 29, 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  • Ekelund, F., & Patterson, D. J. (1997). Some heterotrophic flagellates from a cultivated garden soil in Australia. Archiv für Protistenkunde, 148, 461–478.

    Article  Google Scholar 

  • Foissner, W. (1991). Diversity and ecology of soil flagellates. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 93–112). Oxford: Clarendon.

    Google Scholar 

  • Griessmann, K. (1913). Über marine Flagellaten. Archiv für Protistenkunde, 32, 1–78 [in German].

    Google Scholar 

  • Grosberg, R. K., & Strathmann, R. R. (2007). The evolution of multicellularity: A minor major transition? Annual Review of Ecology, Evolution, and Systematics, 38, 621–654.

    Article  Google Scholar 

  • Hamar, J. (1979). Some new zooflagellates from Hungary. Tiscia (Szeged), 14, 147–162.

    Google Scholar 

  • He, D., Fiz-Palacios, O., Fu, C. J., Fehling, J., Tsai, C. C., & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2011). The ultrastructure of Ancyromonas, a eukaryote without supergroup affinities. Protist, 162, 373–393.

    Article  PubMed  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2013a). The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. European Journal of Protistology, 49, 354–372.

    Article  PubMed  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2013b). The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist, 164, 598–621.

    Article  PubMed  Google Scholar 

  • Heiss, A. A., Lee, W. J., Ishida, K.-I., & Simpson, A. G. B. (2015). Cultivation and characterisation of new species of apusomonads (the sister group to opisthokonts), including close relatives of Thecamonas (Chelonemonas n. gen.). Journal of Eukaryotic Microbiology, 62, 637–649.

    Article  PubMed  Google Scholar 

  • Karpov, S. A. (2007). The flagellar apparatus structure of Apusomonas proboscidea and apusomonad relationships. Protistology, 5, 146–155.

    Google Scholar 

  • Karpov, S. A. (2011). Apusozoa. In S. A. Karpov (Ed.), Protista, Part III. Handbook in Zoology (pp. 308–328). St. Petersburg-Moscow: KMK Scientific Press Ltd. [in Russian].

    Google Scholar 

  • Karpov, S. A., & Myľnikov, A. P. (1989). Biology and ultrastructure of colourless flagellates Apusomonadida ord. n. Zoologicheskiĭ Zhurnal, 53, 5–17 [in Russian].

    Google Scholar 

  • Karpov, S. A., & Zhukov, B. F. (1984). Ultrathin structure of the colourless flagellate Apusomonas proboscidea. Tsitologiya, 26, 886–890 [in Russian].

    Google Scholar 

  • Karpov, S. A., & Zhukov, B. F. (1986). Ultrastructure and taxonomic position of Apusomonas proboscidea Alexeieff. Archiv für Protistenkunde, 131, 13–26.

    Article  Google Scholar 

  • Katz, L. A., Grant, J., Parfrey, L. W., Gant, A., O’Kelly, C. J., Anderson, O. R., Molestina, R. E., & Nerad, T. (2011). Subulatomonas tetraspora nov. gen. nov. sp. is a member of a previously unrecognized major clade of eukaryotes. Protist, 162, 762–773.

    Article  PubMed  Google Scholar 

  • Kim, E., Simpson, A. G. B., & Graham, L. E. (2006). Evolutionary relationships of apusomonads inferred from taxon-rich analyses of six nuclear-encoded genes. Molecular Biology and Evolution, 23, 2455–2466.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24, 801–937.

    Article  Google Scholar 

  • Leander, B. S., & Yubuki, N. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant Journal, 75, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Le, S. Q., Lartillot, N., & Gascuel, O. (2008). Phylogenetic mixture models for proteins. Philosophical Transactions of the Royal Society London B Biological Sciences, 363, 3965–3976.

    Google Scholar 

  • Lee, W. J. (2002). Some free-living heterotrophic flagellates from marine sediments of Inchon and Ganghwa Island, Korea. Korean Journal of Biological Science, 6, 125–143.

    Article  Google Scholar 

  • Lee, W. J., & Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–562.

    Article  Google Scholar 

  • Lee, W. J., Simpson, A. G. B., & Patterson, D. J. (2005). Free-living heterotrophic flagellates from freshwater sites in Tasmania (Australia), a field survey. Acta Protozoologica, 44, 321–350.

    Google Scholar 

  • López-García, P., Philippe, H., Gail, F., & Moreira, D. (2003). Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proceedings of the National Academy of Sciences of the USA, 100, 697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana, R., & Pedrós-Alió, C. (2008). Unveiling new microbial eukaryotes in the surface ocean. Current Opinion in Microbiology, 11, 213–218.

    Article  PubMed  Google Scholar 

  • Massana, R., Pernice, M., Bunge, J. A., & del Campo, J. (2011). Sequence diversity and novelty of natural assemblages of picoeukaryotes from the Indian Ocean. The ISME Journal, 5, 184–195.

    Article  CAS  PubMed  Google Scholar 

  • Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C., Chambouvet, A., Christen, R., Claverie, J. M., Decelle, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Forn, I., Forster, D., Guillou, L., Jaillon, O., Kooistra, W. H., Logares, R., Mahé, F., Not, F., Ogata, H., Pawlowski, J., Pernice, M. C., Probert, I., Romac, S., Richards, T., Santini, S., Shalchian-Tabrizi, K., Siano, R., Simon, N., Stoeck, T., Vaulot, D., Zingone, A., & de Vargas, C. (2015). Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environmental Microbiology, in press. doi: 10.1111/1462-2920.12955.

    Google Scholar 

  • Moestrup, Ø., & Thomsen, H. A. (1976). Fine structural studies on the flagellate genus Bicoeca. I. Bicoeca maris with particular emphasis on the flagellar apparatus. Protistologica, 12, 101–120.

    Google Scholar 

  • Molina, F. I., & Nerad, T. A. (1991). Ultrastructure of Amastigomonas bermudensis ATCC 50234 sp. nov. European Journal of Protistology, 27, 386–396.

    Article  CAS  PubMed  Google Scholar 

  • Myľnikov, A. P. (1989a). Biology of the flagellate Cercomonas marina sp. n. Biol Vnutr Vod Inform Biol, 83, 31–34.

    Google Scholar 

  • Myľnikov, A. P. (1989b). The ultrathin structure of the flagellate Amastigomonas caudata. Tsitologiya, 31, 481–491 [in Russian].

    Google Scholar 

  • Myľnikov, A. P. (1990). Characteristic features of the ultrastructure of colourless flagellate Heteromita sp. Tsitologiya, 32, 567–570 [in Russian].

    Google Scholar 

  • Myľnikov, A. (1999). New brackish water amoeboid flagellates of the genus Amastigomonas (Apusomonadida, Protozoa). Zoologicheskiĭ Zhurnal, 78, 771–777 [in Russian].

    Google Scholar 

  • Myľnikov, A. P. (2012). Myľnikova, A new pseudopodial flagellate (Amastigomonas marisrubri, Apusomonadida) from the Red Sea. Zoologicheskiĭ Zhurnal, 91, 387–392 [in Russian].

    Google Scholar 

  • Nakayama, T., Ishida, K., & Archibald, J. M. (2012). Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion? Public Library of Science One, 7, e52340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev, S. I., Berney, C., Petrov, N. B., Mylnikov, A. P., Fahrni, J. F., Pawlowski, J. (2006). Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. International Journal of Systematic and Evolutionary Microbiology, 56, 1449–1458.

    Google Scholar 

  • Paps, J., Medina-Chacón, L. A., Marshall, W., Suga, H., & Ruiz-Trillo, I. (2013). Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist, 164, 2–12.

    Article  PubMed  Google Scholar 

  • Patterson, D. J., & Lee, W. J. (2000). Geographic distribution and diversity of free-living heterotrophic flagellates. In B. S. C. Leadbeater & J. C. Green (Eds.), The flagellates: Unity, diversity and evolution (pp. 269–287). London: Taylor & Francis.

    Google Scholar 

  • Patterson, D. J., & Simpson, A. G. B. (1996). Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. European Journal of Protistology, 32, 423–448.

    Article  Google Scholar 

  • Patterson, D. J., & Zölffel, M. (1991). Heterotrophic flagellates of uncertain taxonomic position. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 427–476). Oxford: Clarendon.

    Google Scholar 

  • Ruiz-Trillo, I., Burger, G., Holland, P. W., King, N., Lang, B. F., Roger, A. J., & Gray, M. W. (2007). The origins of multicellularity: A multi-taxon genome initiative. Trends in Genetics, 23, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K., & Arndt, H. (2005). Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquatic Microbial Ecology, 38, 239–247.

    Article  Google Scholar 

  • Scheckenbach, F., Wylezich, C., Myľnikov, A. P., Weitere, M., & Arndt, H. (2006). Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Applied and Environmental Microbiology, 72, 6638–6643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebé-Pedrós, A., Roger, A. J., Lang, F. B., King, N., & Ruiz-Trillo, I. (2010). Ancient origin of the integrin-mediated adhesion and signaling machinery. Proceedings of the National Academy of Sciences USA, 107, 10142–10147.

    Article  Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organisation, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Stechmann, A., & Cavalier-Smith, T. (2002). Rooting the eukaryote tree by using a derived gene fusion. Science, 297, 89–91.

    Article  CAS  PubMed  Google Scholar 

  • Takishita, K., Yubuki, N., Kakizoe, N., Inagaki, Y., & Maruyama, T. (2007). Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: Surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles, 11, 563–576.

    Article  CAS  PubMed  Google Scholar 

  • Takishita, K., Kakizoe, N., Yoshida, T., & Maruyama, T. (2010). Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. Journal of Eukaryotic Microbiology, 57, 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonenkov, D. V., Mazei, Y. A., & Myľnikov, A. P. (2006). Species diversity of heterotrophic flagellates in White Sea littoral sites. European Journal of Protistology, 42, 191–200.

    Article  PubMed  Google Scholar 

  • Tong, S. M. (1997). Heterotrophic flagellates from the water column in Shark Bay, Western Australia. Marine Biology, 128, 517–536.

    Article  Google Scholar 

  • Tong, S. M., Nygaard, K., Bernard, C., Vørs, N., & Patterson, D. J. (1998). Heterotrophic flagellates from the water column in Port Jackson, Sydney, Australia. European Journal of Protistology, 34, 162–194.

    Article  Google Scholar 

  • Torruella, G., Derelle, R., Paps, J., Lang, B. F., Roger, A. J., Shalchian-Tabrizi, K., & Ruiz-Trillo, I. (2012). Phylogenetic relationships within the opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Molecular Biology and Evolution, 29, 531–534.

    Google Scholar 

  • Torruella, G., de Mendoza, A., Grau-Bové, X., Antó, M., Chaplin, M. A., del Campo, J., Eme, L., Pérez-Cordón, G., Whipps, C. M., Nichols, K. M., Paley, R., Roger, A. J., Sitjà-Bobadilla, A., Donachie, S., & Ruiz-Trillo, I. (2015). Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Current Biology, 25, 2404–2410.

    Article  CAS  PubMed  Google Scholar 

  • Vickerman, K., Darbyshire, J. F., & Ogden, C. F. (1974). Apusomonas proboscidea Alexeieff 1924, an unusual phagotrophic flagellate from soil. Archiv für Protistenkunde, 116, 254–269.

    Google Scholar 

  • Vørs, N. (1993). Heterotrophic amoebae, flagellates and heliozoa from Arctic marine waters (North West Territories, Canada and West Greenland). Polar Biology, 13, 113–126.

    Article  Google Scholar 

  • Walker, G., Dacks, J. B., & Embley, T. M. (2006). Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as “Mastigamoeba invertens”. Journal of Eukaryotic Microbiology, 53, 65–78.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, M. P., Hooley, P., & Brown, M. R. W. (2013). Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: Implications for the ice age and land colonisation. BMC Research Notes, 6, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yubuki, N., Leander, B. S., & Silberman, J. D. (2010). Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis). Protist, 161, 264–278.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Shalchian-Tabrizi, K., & Klaveness, D. (2013). Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 69, 462–468.

    Article  CAS  PubMed  Google Scholar 

  • Zhukov, B. F. (1975). Amastigomonas caudata sp. n. (suborder Bodonina Holl., order Kinetoplastida Honigberg, class Zoomastigophorea Calkins, Protozoa). Academy of Sciences of the USSR. Biology of Inland Waters Information Bulletin, 19, 25–26 [in Russian].

    Google Scholar 

Breviatea

  • Edgcomb, V., Simpson, A. G. B., Amaral Zettler, L., Nerad, T., Patterson, D. J., Holder, M. E., & Sogin, M. L. (2002). Pelobionts are degenerate protists: Insights from molecules and morphology. Molecular Biology and Evolution, 19, 978–982.

    Article  CAS  PubMed  Google Scholar 

  • Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H. E., Riedel, D., Littmann, S., Chen, J., Milucka, J., Viehweger, B., Becker, K. W., Dong, X., Stairs, C. W., Hinrichs, K.-U., Brown, M. W., Roger, A. J., & Strous, M. (2016). Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature, 534, 254–258.

    Google Scholar 

  • Minge, M., Silberman, J. D., Orr, R., Cavalier-Smith, T., Shalchian-Tabrizi, K., Burki, F., Skjaeveland, Å., & Jakobsen, K. S. (2009). Evolutionary position of breviate amoebae illuminates the primary eukaryote divergence. Philosophical Transactions of the Royal Society B, 276, 597–604.

    CAS  Google Scholar 

  • Stairs, C. W., Eme, L., Brown, M. W., Mutsaers, C., Susko, E., Dellaire, G., Soanes, D. M., Van Der Giezen, M., & Roger, A. J. (2014). A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Current Biology, 24, 1176–1186.

    Article  CAS  PubMed  Google Scholar 

  • Stiller, J. W., & Hall, B. D. (1999). Long-branch attraction and the rDNA model of early eukaryotic evolution. Molecular Biology and Evolution, 16, 1270–1279.

    Article  CAS  PubMed  Google Scholar 

Ancyromonadida

  • Atkins, M. S., Teske, A. P., & Anderson, O. R. (2000a). A survey of flagellate diversity at four deep-sea hydrothermal vents in the eastern Pacific Ocean using structural and molecular approaches. Journal of Eukaryotic Microbiology, 47, 400–411.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, M. S., McArthur, A. G., & Teske, A. P. (2000b). Ancyromonadida: A new phylogenetic lineage among the protozoa closely related to the common ancestor of metazoans, fungi, and choanoflagellates (Opisthokonta). Journal of Molecular Evolution, 51, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1997). Amoeboflagellates and mitochondrial cristae in eukaryote evolution: Megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Archiv für Protistenkunde, 147, 237–258.

    Article  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., Stechmann, A., Oates, B., & Nikolaev, S. (2008). Planomonadida ord. nov. (Apusozoa): Ultrastructural affinity with Micronuclearia podoventralis and deep divergences within Planomonas gen. nov. Protist, 159, 535–562.

    Article  PubMed  Google Scholar 

  • Chen, M., Chen, F., Yu, Y., Ji, J., & Kong, F. (2008). Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical lake in China. Microbial Ecology, 56, 572–583.

    Article  CAS  PubMed  Google Scholar 

  • Glücksman, E., Snell, E. A., & Cavalier-Smith, T. (2013). Phylogeny and evolution of Planomonadida (Sulcozoa): Eight new species and new genera Fabomonas and Nutomonas. European Journal of Protistology, 49, 179–200.

    Article  PubMed  Google Scholar 

  • Hänel, K. (1979). Systematik und Ökologie der farblosen Flagellaten des Abwassers. Archiv für Protistenkunde, 121, 73–137 [in German].

    Article  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2010). Clarifying the taxonomic identity of a phylogenetically important group of eukaryotes: Planomonas is a junior synonym of Ancyromonas. Journal of Eukaryotic Microbiology, 57, 273–284.

    Google Scholar 

  • Klebs, G. (1893). Flagellatenstudien. Zeitschrift für Wissenschaftliche Zoologie, 55, 265–445.

    Google Scholar 

  • Lemmermann, E. (1914). Flagellatae 1. Jena: Gustav Fischer.

    Google Scholar 

  • Myľnikov, A. P. (1990). Characteristic features of the ultrastructure of colourless flagellate Heteromita sp. Tsitologiya, 32, 567–570 (in Russian).

    Google Scholar 

  • Patterson, D. J., Vørs, N., Simpson, A. G. B., & O’Kelly, C. (2000). Residual free-living and predatory heterotrophic flagellates. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An Illustrated Guide to the Protozoa (pp. 1302–1328). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Saville Kent, W. (1882). A manual of the infusoria. London: Bogue.

    Google Scholar 

  • Stock, A., Jürgens, K., Bunge, J., & Stoeck, T. (2009). Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquatic Microbial Ecology, 55, 267–284.

    Article  Google Scholar 

  • Tong, S. M., Vørs, N., & Patterson, D. J. (1997). Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from freshwater sites in the Antarctic. Polar Biology, 18, 91–106.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to WonJe Lee (Kyungnam University, South Korea) for discussion and scanning electron micrographs of Ancyromonas sigmoides, to Yana Eglit (Dalhousie University) for translations of the Russian literature and for providing light micrographs of Apusomonas proboscidea, to Courtney Stairs (Dalhousie University) and Giselle Walker (Charles University in Prague) for comments, and to Ping Li and Patricia Scallion (Dalhousie University) for assistance with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron A. Heiss , Matthew W. Brown or Alastair G. B. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Heiss, A.A., Brown, M.W., Simpson, A.G.B. (2016). Apusomonadida. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics