Skip to main content

Heterolobosea

  • Living reference work entry
  • First Online:

Abstract

Heterolobosea is a group of ~150 described species of heterotrophs, almost all free living. Many are “amoeboflagellates” with a three-phase asexual life cycle, centered on trophic amoebae that can reversibly transform into flagellates (some of which undertake phagocytosis and/or division) and cysts. The amoebae are usually lobose, with “eruptive” pseudopodia. Flagellates typically have two or four near-parallel flagella and, if phagocytic, a feeding groove and/or elongate cytostome. Some taxa have simpler lifecycles, for example, Vahlkampfia spp. apparently lack flagellates, while Percolomonas and Stephanopogon lack amoebae. Stephanopogon, uniquely, has numerous flagella in rows like the kineties of ciliates. Acrasids, meanwhile, are terrestrial “slime molds” in which amoebae aggregate to form stalked fruiting bodies. The mitochondria are often enveloped in endoplasmic reticulum and usually have discoidal cristae, while the Golgi apparatus lacks dictyosomal stacking. Most flagellates have a “doubled” flagellar apparatus with two sub-identical halves. The flagellar apparatus typically includes a large “R2” microtubular root (or two) and a striated rhizoplast. Most heteroloboseans are marine, freshwater, or terrestrial aerobes, but the group shows considerable ecological breadth, for example, Psalteriomonadidae and Creneis are anaerobes, three groups are (mostly) obligate halophiles, and many species are thermophiles. The best-known genus is Naegleria. Naegleria gruberi is a cell biology model (e.g., for flagellar apparatus development). Naegleria fowleri is a facultative human pathogen responsible for primary amoebic meningoencephalitis (PAM). This infection is usually acquired from warm water via the nasal passages; it is extremely rare but almost always fatal.

This is a preview of subscription content, log in via an institution.

References

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aitken, D., Hay, J., Kinnear, F. B., Kirkness, C. M., Lee, W. R., & Seal, D. V. (1996). Amebic keratitis in a wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmanella infection. Ophthalmology, 103, 485–494.

    Article  CAS  PubMed  Google Scholar 

  • Alexandrakis, G., Miller, D., & Huang, A. J. W. (1998). Amebic keratitis due to Vahlkampfia infection following corneal trauma. Archives of Ophthalmology, 117, 950–951.

    Google Scholar 

  • Alexeieff, A. (1912). Sur les caracteres cytologiques et la systematique des amibes du groupe limax (Naegleria nov. gen. et Hartmannia nov. gen.) et des amibes parasites des vertébrés (Proctamoeba nov. gen.). Bulletin de la Société Zoologique de France, 37, 55–74.

    Article  Google Scholar 

  • Amaral Zettler, L. A., Gómez, F., Zettler, E., Keenan, B. G., Amils, R., & Sogin, M. L. (2002). Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature, 417, 137–137.

    Article  CAS  PubMed  Google Scholar 

  • Balamuth, W., Bradbury, P. C., & Schuster, F. L. (1983). Ultrastructure of the amoeboflagellate Tetramitus rostratus. The Journal of Protozoology, 30, 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., & Doolittle, W. F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.

    Article  CAS  PubMed  Google Scholar 

  • Barberà, M. J., Ruiz-Trillo, I., Tufts, J. Y., Bery, A., Silberman, J. D., & Roger, A. J. (2010). Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryotic Cell, 9, 1913–1924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartrand, T. A., Causey, J. J., & Clancy, J. L. (2014). Naegleria fowleri: An emerging drinking water pathogen. Journal – American Water Works Association, 106, E418–E432.

    Article  CAS  Google Scholar 

  • Bass, D., Silberman, J. D., Brown, M. W., Tice, A. K., Jousset, A., Geisen, S., & Hartikainen, H. (2016). Coprophilic amoebae and flagellates, including Guttulinopsis, Rosculus and Helkesimastix, characterise a divergent and diverse rhizarian radiation and contribute to a large diversity of faecal-associated protists. Environmental Microbiology, 18, 1604–1619.

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner, M., Eberhardt, S., De Jonckheere, J. F., & Stetter, K. O. (2009). Tetramitus thermacidophilus n. sp., an amoeboflagellate from acidic hot springs. Journal of Eukaryotic Microbiology, 56, 201–206.

    Article  PubMed  Google Scholar 

  • Beech, P. L., Heimann, K., & Melkonian, M. (1991). Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma, 164, 23–37.

    Article  Google Scholar 

  • Bernard, C., Simpson, A. G., & Patterson, D. J. (2000). Some free-living flagellates (Protista) from anoxic habitats. Ophelia, 52, 113–142.

    Article  Google Scholar 

  • Bovee, E. C. (1959). Studies on amoeboflagellates. 1. The general morphology and mastigonts of Trimastigamoeba philippinensis Whitmore 1911. Journal of Protozoology, 6, 69–75.

    Article  Google Scholar 

  • Broers, C. A. M., Meijers, H. H. M., Symens, J. C., Stumm, C. K., Vogels, G. D., & Brugerolle, G. (1993). Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. European Journal of Protistology, 29, 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Broers, C. A. M., Stumm, C. K., & Vogels, G. D. (1989). A heterolobose amoebo-flagellate associated with methanogenic bacteria. In D. Lloyd, G. H. Coombs, & T. A. Paget (Eds.), Biochemistry and molecular biology of “anaerobic” protozoa (pp. 22–31). London: Harwood publishers.

    Google Scholar 

  • Broers, C. A. M., Stumm, C. K., Vogels, G. D., & Brugerolle, G. (1990). Psalteriomonas lanterna gen. nov., sp. nov., a free-living ameboflagellate isolated from fresh-water anaerobic sediments. European Journal of Protistology, 25, 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S., & De Jonckheere, J. F. (1999). A reevaluation of the amoeba genus Vahlkampfia based on SSUrDNA sequences. European Journal of Protistology, 35, 49–54.

    Article  Google Scholar 

  • Brown, M. W., & Silberman, J. D. (2013). The non-dictyostelid sorocarpic amoebae. In M. Romeralo, S. Baldauf, & R. Escalante (Eds.), Dictyostelids (pp. 219–242). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Brown, M. W., Kolisko, M., Silberman, J. D., & Roger, A. J. (2012b). Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Current Biology, 22, 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. W., Silberman, J. D., & Spiegel, F. W. (2010). A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. Journal of Eukaryotic Microbiology, 57, 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. W., Silberman, J. D., & Spiegel, F. W. (2011). “Slime molds” among the Tubulinea (Amoebozoa): molecular systematics and taxonomy of Copromyxa. Protist, 162, 277–287.

    Article  PubMed  Google Scholar 

  • Brown, M. W., Silberman, J. D., & Spiegel, F. W. (2012a). A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata). European Journal of Protistology, 48, 103–123.

    Article  PubMed  Google Scholar 

  • Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Molecular Biology and Evolution, 26, 2699–2709.

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle, G., & Patterson, D. (1997). Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization. European Journal of Protistology, 33, 121–130.

    Article  Google Scholar 

  • Brugerolle, G., & Simpson, A. G. B. (2004). The flagellar apparatus of heteroloboseans. Journal of Eukaryotic Microbiology, 51, 96–107.

    Article  PubMed  Google Scholar 

  • Bunting, M. (1926). Studies of the life-cycle of Tetramitus rostratus Perty. Journal of Morphology and Physiology, 42, 23–81.

    Article  Google Scholar 

  • Bunting, M., & Wenrich, D. H. (1929). Binary fission in the amoeboid and flagellate phases of Tetramitus rostratus (Protozoa). Journal of Morphology, 47, 37–87.

    Article  Google Scholar 

  • Burger, G., Gray, M. W., Forget, L., & Lang, B. F. (2013). Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biology and Evolution, 5, 418–438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carey, P. G., & Page, F. C. (1985). A light- and electron microscopical study of the marine amoeboflagellate Heteramoeba clara Droop 1962. Archiv für Protistenkunde, 130, 313–328.

    Article  Google Scholar 

  • Carter, R. F. (1970). Description of a Naegleria sp. isolated from two cases of primary amoebic meningoencephalitis, and of the experimental pathological changes induced by it. The Journal of Pathology, 100, 217–244.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1993). Kingdom Protozoa and its 18 phyla. Microbiological Reviews, 57, 953–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2015). Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny. European Journal of Protistology, 51, 121–137.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., & Nikolaev, S. (2008). The zooflagellates Stephanopogon and Percolomonas are a clade (class Percolatea: phylum Percolozoa). Journal of Eukaryotic Microbiology, 55, 501–509.

    Article  PubMed  Google Scholar 

  • Chávez-Munguía, B., Omaña-Molina, M., Castañon, G., Bonilla, P., González-Lázaro, M., Hernández-Martínez, D., Salazar-Villatoro, L., Esparza-García, A., et al. (2009). Ultrastructural study of the encystation and excystation processes in Naegleria sp. Journal of Eukaryotic Microbiology, 56, 66–72.

    Article  PubMed  Google Scholar 

  • Chung, S., Kang, S., Paik, S., & Lee, J. (2007). NgUNC-119, Naegleria homologue of UNC-119, localizes to the flagellar rootlet. Gene, 389, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Cienkowsky, L. (1873). Guttulina rosea. Transactions of botantical section at the 4th Meeting Russian naturalists, Kazan.

    Google Scholar 

  • Clark, C. G., & Cross, G. A. (1987). rRNA genes of Naegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid. Molecular and Cellular Biology, 7, 3027–3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darbyshire, J. F., Page, F. C., & Goodfellow, L. P. (1976). Paratetramitus jugosus, an amoeboflagellate of soils and fresh water, type species of Paratetramitus nov. gen. Protistologica, 12, 375–387.

    Google Scholar 

  • de Graaf, R. M., Duarte, I., van Alen, T. A., Kuiper, J. W., Schotanus, K., Rosenberg, J., et al. (2009). The hydrogenosomes of Psalteriomonas lanterna. BMC Evolutionary Biology, 9, 287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Jonckheere, J. F. (2002). A century of research on the amoeboflagellate genus Naegleria. Acta Protozoologica, 41, 309–342.

    Google Scholar 

  • De Jonckheere, J. F. (2004). Molecular definition and the ubiquity of species in the genus Naegleria. Protist, 155, 89–103.

    Article  CAS  PubMed  Google Scholar 

  • De Jonckheere, J. F. (2007). Molecular identification of free-living amoebae of the Vahlkampfiidae and Acanthamoebidae isolated in Arizona (USA). European Journal of Protistology, 43, 9–15.

    Article  PubMed  Google Scholar 

  • De Jonckheere, J. F. (2011). Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infection, Genetics and Evolution, 11, 1520–1528.

    Article  PubMed  Google Scholar 

  • De Jonckheere, J. F. (2014). What do we know by now about the genus Naegleria? Experimental Parasitology, 145, S2–S9.

    Article  PubMed  Google Scholar 

  • De Jonckheere, J. F., & Brown, S. (2005a). Isolation of a vahlkampfiid amoeba from a contact lens: Tetramitus ovis (Schmidt, 1913), comb. nov. European Journal of Protistology, 41, 93–97.

    Article  Google Scholar 

  • De Jonckheere, J. F., & Brown, S. (2005b). The identification of vahlkampfiid amoebae by ITS sequencing. Protist, 156, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • De Jonckheere, J. F., Baumgartner, M., Eberhardt, S., Opperdoes, F. R., & Stetter, K. O. (2011a). Oramoeba fumarolia gen. nov., sp nov., a new marine heterolobosean amoeboflagellate growing at 54 °C. European Journal of Protistology, 47, 16–23.

    Article  PubMed  Google Scholar 

  • De Jonckheere, J. F., Baumgartner, M., Opperdoes, F. R., & Stetter, K. O. (2009). Marinamoeba thermophila, a new marine heterolobosean amoeba growing at 50° C. European Journal of Protistology, 45, 231–236.

    Article  PubMed  Google Scholar 

  • De Jonckheere, J. F., Brown, S., Dobson, P. J., Robinson, B. S., & Pernin, P. (2001). The amoeba-to-flagellate transformation test is not reliable for the diagnosis of the genus Naegleria. Description of three new Naegleria spp. Protist, 152, 115–121.

    Article  CAS  PubMed  Google Scholar 

  • De Jonckheere, J. F., Brown, S., & Robinson, B. S. (1997). On the identity of the amoeboflagellates Didascalus thorntoni and Adelphamoeba galeacystis. Journal of Eukaryotic Microbiology, 44, 52–54.

    Article  CAS  PubMed  Google Scholar 

  • De Jonckheere, J. F., Murase, J., & Opperdoes, F. R. (2011b). A new thermophilic heterolobosean amoeba, Fumarolamoeba ceborucoi, gen. nov., sp. nov., isolated near a fumarole at a volcano in Mexico. Acta Protozoologica, 50, 41–48.

    Google Scholar 

  • Dingle, A. D., & Fulton, C. (1966). Development of the flagellar apparatus of Naegleria. The Journal of Cell Biology, 31, 43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezal, P., Likic, V., Tachezy, J., & Lithgow, T. (2006). Evolution of the molecular machines for protein import into mitochondria. Science, 313, 314–318.

    Article  CAS  PubMed  Google Scholar 

  • Droop, M. R. (1962). Heteramoeba clara n. gen., n. sp., a sexual biphasic amoeba. Archives of Microbiology, 42, 254–266.

    CAS  Google Scholar 

  • Dua, H. S., Azuara-Blanco, A., Hossain, M., & Lloyd, J. (1998). Non-Acathamoeba amebic keratitis. Cornea, 17, 675–677.

    Article  CAS  PubMed  Google Scholar 

  • Dyková, I., Pecková, H., Fiala, I., & Dvořáková, H. (2006). Fish-isolated Naegleria strains and their phylogeny inferred from ITS and SSU rDNA sequences. Folia Parasitologica, 53, 172–180.

    Article  PubMed  Google Scholar 

  • El Kadiri, G., Joyon, L., & Pussard, M. (1992). Pernina chaumonti, n.g., n.sp., a new marine amoeba (Rhizopoda, Heterolobosea). European Journal of Protistology, 28, 43–50.

    Article  Google Scholar 

  • Embley, T.M., Hirt, R.P. (1998). Early branching eukaryotes? Current Opinion in Genetics & Development 8, 624–629.

    Google Scholar 

  • Entz, G. (1884). Über Infusorien des Golfes von Neapel. Mitteilung aus der zoologischen Station zu Neapel, 5, 289–444.

    Google Scholar 

  • Entz, G. (1904). Die Fauna der kontinentalen Kochsalzwässer. Mathematische und Naturwissenschaftliche Berichte aus Ungarn, 19, 89–124.

    Google Scholar 

  • Fenchel, T., & Patterson, D. J. (1986). Percolomonas cosmopolitus (Ruinen) n. gen., a new type of filter feeding flagellate from marine plankton. Journal of the Marine Biological Association of the United Kingdom, 66, 465–482.

    Article  Google Scholar 

  • Flegontov, P., Gray, M. W., Burger, G., & Lukeš, J. (2011). Gene fragmentation: A key to mitochondrial genome evolution in Euglenozoa? Current Genetics, 57, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Laylin, L. K., & Fulton, C. (2016). Naegleria: A classic model for de novo basal body assembly. Cilia, 5, 1.

    Article  CAS  Google Scholar 

  • Fritz-Laylin, L. K., Levy, Y. Y., Levitan, E., Chen, S., Cande, W. Z., Lai, E. Y., & Fulton, C. (2016). Rapid centriole assembly in Naegleria reveals conserved roles for both de novo and mentored assembly. Cytoskeleton, 73, 109–116.

    Article  PubMed  Google Scholar 

  • Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L., Dacks, J. B., Carpenter, M. L., Field, M. C., et al. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140, 631–642.

    Article  CAS  PubMed  Google Scholar 

  • Fu, C. J., Sheikh, S., Miao, W., Andersson, S. G., & Baldauf, S. L. (2014). Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biology and Evolution, 6, 2240–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, M. S., & Rakatansky, R. M. (1966). A preliminary study of the carotenoids in Acrasis rosea. Canadian Journal of Botany, 44, 269–274.

    Article  Google Scholar 

  • Fulton, C. (1970). Amebo-flagellates as research partners. The laboratory biology of Naegleria and Tetramitus. Methods in Cell Biology, 4, 341.

    Article  Google Scholar 

  • Fulton, C. (1977). Cell differentiation in Naegleria gruberi. Annual Reviews in Microbiology, 31, 597–627.

    Article  CAS  Google Scholar 

  • Fulton, C. (1983). Macromolecular syntheses during the quick-change act of Naegleria. The Journal of Protozoology, 30, 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Fulton, C. (1993). Naegleria: A research partner for cell and developmental biology. Journal of Eukaryotic Microbiology, 40, 520–532.

    Article  Google Scholar 

  • Fulton, C., & Dingle, A. D. (1967). Appearance of the flagellate phenotype in populations of Naegleria amebae. Developmental Biology, 15, 165–191.

    Article  CAS  PubMed  Google Scholar 

  • Fulton, C., & Dingle, A. D. (1971). Basal bodies, but not centrioles, in Naegleria. Journal of Cell Biology, 51, 826–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton, C., Webster, C., & Wu, J. S. (1984). Chemically defined media for cultivation of Naegleria gruberi. Proceedings of the National Academy of Sciences of the United States of America, 81, 2406–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garstecki, T., Brown, S., & De Jonckheere, J. F. (2005). Description of Vahlkampfia signyensis n. sp. (Heterolobosea), based on morphological, ultrastructural and molecular characteristics. European Journal of Protistology, 41, 119–127.

    Article  Google Scholar 

  • Geisen, S., Bonkowski, M., Zhang, J., & De Jonckheere, J. F. (2015). Heterogeneity in the genus Allovahlkampfia and the description of the new genus Parafumarolamoeba (Vahlkampfiidae; Heterolobosea). European Journal of Protistology, 51, 335–349.

    Article  PubMed  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Taxon-rich phylogenomic analyses support the monophyly of Excavata and robustly resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the United States of America, 106, 3859–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, T., Brown, M. W., Plotnikov, A., Selivanova, E., Park, J. S., Gunderson, J. H., et al. (2013). Amoeba stages in the deepest branching heteroloboseans, including Pharyngomonas: Evolutionary and systematic implications. Protist, 164, 272–286.

    Article  PubMed  Google Scholar 

  • Harding, T., Brown, M. W., Simpson, A. G., & Roger, A. J. (2016). Osmoadaptative strategy and its molecular signature in obligately halophilic heterotrophic protists. Genome Biology and Evolution, 8, 2241–2258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauer, G., & Rogerson, A. (2005). Heterotrophic protozoa from hypersaline environments. In N. Gunde-Cimerman, A. Oren, & A. Plemenitaš (Eds.), Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya (pp. 519–539). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Heimann, K., Roberts, K. R., & Wetherbee, R. (1995). Flagellar apparatus transformation and development in Prorocentrum micans and P. minimum (Dinophyceae). Phycologia, 34, 323–335.

    Article  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2013). The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. European Journal of Protistology, 49, 354–372.

    Article  PubMed  Google Scholar 

  • Herman, E. K., Greninger, A. L., Visvesvara, G. S., Marciano-Cabral, F., Dacks, J. B., & Chiu, C. Y. (2013). The mitochondrial genome and a 60-kb nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis. Journal of Eukaryotic Microbiology, 60, 179–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkle, G., & Sogin, M. L. (1993). The evolution of the Vahlkampfiidae as deduced from 16S-like ribosomal RNA analysis. Journal of Eukaryotic Microbiology, 40, 599–603.

    Article  CAS  PubMed  Google Scholar 

  • Hohl, H. R., & Hamamoto, S. T. (1968). Lamellate structures in the nucleolus of the cellular slime mold Acrasis rosea. Pacific Science, 22, 402–407.

    Google Scholar 

  • Hohl, H. R., & Hamamoto, S. T. (1969). Ultrastructure of Acrasis rosea, a cellular slime mold, during development. The Journal of Protozoology, 16, 333–344.

    Article  CAS  PubMed  Google Scholar 

  • John, D. T., Cole, T. B., & Bruner, R. A. (1985). Amebostomes of Naegleria fowleri. Journal of Protozoology, 32, 12–19.

    Article  CAS  PubMed  Google Scholar 

  • John, D. T., Cole, T. B., & Marciano-Cabral, F. M. (1984). Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Applied and Environmental Microbiology, 47, 12–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., et al. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirby, H. (1932). Two protozoa from brine. Transactions of the American Microscopical Society, 51, 8–15.

    Article  Google Scholar 

  • Kirby, W. A., Tikhonenkov, D. V., Mylnikov, A. P., Janouškovec, J., Lax, G., & Simpson, A. G. B. (2015). Characterization of Tulamoeba bucina n. sp., an extremely halotolerant amoeboflagellate heterolobosean belonging to the TulamoebaPleurostomum clade (Tulamoebidae n. fam.). Journal of Eukaryotic Microbiology, 62, 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Klute, M.J., Melançon, P., Dacks, J.B. (2011). Evolution and diversity of the Golgi. Cold Spring Harbor Perspectives in Biology, 3, a007849.

    Google Scholar 

  • Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical sediments. Journal of Natural History, 24, 801–893.

    Article  Google Scholar 

  • Lee, J. H. (2010). De novo formation of basal bodies during cellular differentiation of Naegleria gruberi: Progress and hypotheses. Seminars in Cell & Developmental Biology, 21, 156–162.

    Article  Google Scholar 

  • Lee, J. J., & Soldo, A. T. (1992). Protocols in protozoology. Lawrence: Society of Protozoologists.

    Google Scholar 

  • Lee, J. H., Kang, S., Choi, Y. S., Kim, H. K., Yeo, C. Y., Lee, Y., et al. (2015). Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. Protist, 166, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. J., Miller, K., & Simpson, A. G. B. (2014). Morphological and molecular characterization of a new species of Stephanopogon, Stephanopogon pattersoni n. sp. Journal of Eukaryotic Microbiology, 61, 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb, D. L., & Corliss, J. O. (1982). Stephanopogon, a phylogenetically important “ciliate,” shown by ultrastructural studies to be a flagellate. Science, 215, 303–304.

    Article  CAS  PubMed  Google Scholar 

  • Lwoff, A. (1936). Le cycle nucleaire de Stephanopogon mesnili Lw. (Cilié Homocaryote). Archives de Zoologie Expérimentale et Générale, 78, 117–132.

    Google Scholar 

  • Maruyama, S., & Nozaki, H. (2007). Sequence and intranuclear location of the extrachromosomal rDNA plasmid of the amoeboflagellate Naegleria gruberi. Journal of Eukaryotic Microbiology, 54, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Melkonian, M., Reize, I. B., & Preisig, H. R. (1987). Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: Studies on Nephroselmis olivacea (Prasinophyceae). In W. Wiessner, D. G. Robinson, & R. C. Starr (Eds.), Algal development (pp. 102–113). Berlin: Springer.

    Chapter  Google Scholar 

  • Mowbrey, K., & Dacks, J. B. (2009). Evolution and diversity of the Golgi body. FEBS Letters, 583, 3738–3745.

    Article  CAS  PubMed  Google Scholar 

  • Murase, J., Takenouchi, Y., Iwasaki, K., & Kimura, M. (2014). Microeukaryotic community and oxygen response in rice field soil revealed using a combined rRNA-gene and rRNA-based approach. Microbes and Environments, 29, 74–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murtagh, G. J., Dyer, P. S., Rogerson, A., Nash, G. V., & Laybourn-Parry, J. (2002). A new species of Tetramitus in the benthos of a saline antarctic lake. European Journal of Protistology, 37, 437–443.

    Article  Google Scholar 

  • Nikolaev, S. I., Mylnikov, A. P., Berney, C., Fahrni, J., Pawlowski, J., Aleshin, V. V., & Petrov, N. B. (2004). Molecular phylogenetic analysis places Percolomonas cosmopolites within Heterolobosea: Evolutionary implications. Journal of Eukaryotic Microbiology, 51, 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Nohýnková, E., Tůmová, P., & Kulda, J. (2006). Cell division of Giardia intestinalis: Flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell, 5, 753–761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olive, L. S. (1963). The question of sexuality in cellular slime molds. Bulletin of the Torrey Botanical Club, 90, 144–147.

    Article  Google Scholar 

  • Olive, L. S. (1975). The mycetozoans. New York: Academic.

    Google Scholar 

  • Olive, L. S., & Stoianovitch, C. (1960). Two new members of the Acrasiales. Bulletin of the Torrey Botanical Club, 87, 1–20.

    Article  Google Scholar 

  • Olive, L. S., Dutta, S. K., & Stoianovitch, C. (1961). Variation in the cellular slime mold Acrasis rosea. The Journal of Protozoology, 8, 467–472.

    Article  Google Scholar 

  • Olive, L. S., Stoianovitch, C., & Bennett, W. E. (1983). Descriptions of acrasid cellular slime molds: Pocheina rosea and a new species, Pocheina flagellata. Mycologia, 75, 1019–1029.

    Article  Google Scholar 

  • Opperdoes, F. R., De Jonckheere, J. F., & Tielens, A. G. (2011). Naegleria gruberi metabolism. International Journal for Parasitology, 41, 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Ozkoc, C., Tuncay, S., Delibas, S. B., Akisu, C., Ozbek, Z., Durak, I., & Walochnik, J. (2008). Identification of Acanthamoeba genotype T4 and Paravahlkampfia sp. from two clinical samples. Journal of Medical Microbiology, 57, 392–396.

    Article  PubMed  Google Scholar 

  • Page, F. C. (1975). A new family of amoebae with fine pseudopodia. Zooloogical Journal of the Linnean Society, 56, 73–89.

    Article  Google Scholar 

  • Page, F. C. (1976). A revised classification of the Gymnamoebia (Protozoa: Sarcodina). Zoological Journal of the Linnean Society, 58, 61–77.

    Article  Google Scholar 

  • Page, F. C. (1978). Acrasis rosea and the possible relationship between Acrasida and Schizopyrenida. Archiv für Protistenkunde, 120, 169–181.

    Article  Google Scholar 

  • Page, F. C. (1984). Gruberella flavescens (Gruber, 1889), a multinucleate lobose marine amoeba (Gymnamoebia). Journal of the Marine Biological Association of the United Kingdom, 64, 303–316.

    Article  Google Scholar 

  • Page, F. C. (1987). Transfer of Stachyamoeba lipophora to the class Heterolobosea. Archiv für Protistenkunde, 133, 191–197.

    Article  Google Scholar 

  • Page, F. C. (1988). A new key to freshwater and soil gymnamoebae. Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Page, F. C., & Blanton, R. L. (1985). The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica, 21, 121–132.

    Google Scholar 

  • Pánek, T., & Čepička, I. (2012). Diversity of Heterolobosea. In M. Caliskan (Ed.), Genetic diversity in microorganisms (pp. 3–26). Rijeka: InTech.

    Google Scholar 

  • Pánek, T., Ptáčková, E., & Čepička, I. (2014b). Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. International Journal of Systematic and Evolutionary Microbiology, 64, 2280–2304.

    Article  PubMed  Google Scholar 

  • Pánek, T., Silberman, J. D., Yubuki, N., Leander, B. S., & Cepicka, I. (2012). Diversity, evolution and molecular systematics of the Psalteriomonadidae, the main lineage of anaerobic/microaerophilic heteroloboseans (Excavata: Discoba). Protist, 163, 807–831.

    Article  PubMed  Google Scholar 

  • Pánek, T., Simpson, A. G. B., Hampl, V., & Čepička, I. (2014a). Creneis carolina gen. et sp. nov. (Heterolobosea), a novel marine anaerobic protist with strikingly derived morphology and life cycle. Protist, 165, 542–567.

    Article  PubMed  Google Scholar 

  • Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., & Katz, L. A. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59, 518–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J. S. (2012). Effects of different ion compositions on growth of obligately halophilic protozoan Halocafeteria seosinensis. Extremophiles, 16, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. S., & Simpson, A. G. B. (2011). Characterization of Pharyngomonas kirbyi (= “Macropharyngomonas halophila” nomen nudum), a very deep-branching, obligately halophilic heterolobosean flagellate. Protist, 55, 501–509.

    Google Scholar 

  • Park, J. S., & Simpson, A. G. B. (2015). Diversity of heterotrophic protists from extremely hypersaline habitats. Protist, 166, 422–437.

    Article  PubMed  Google Scholar 

  • Park, J. S., & Simpson, A. G. B. (2016). Characterization of a deep-branching heterolobosean, Pharyngomonas turkanaensis n. sp., isolated from a non-hypersaline habitat, and ultrastructural comparison of cysts and amoebae among Pharyngomonas strains. Journal of Eukaryotic Microbiology, 63, 100–111.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. S., Jonckheere, J. F., & Simpson, A. G. B. (2012). Characterization of Selenaion koniopes n. gen., n. sp., an amoeba that represents a new major lineage within Heterolobosea, isolated from the Wieliczka salt mine. Journal of Eukaryotic Microbiology, 59, 601–613.

    Article  PubMed  Google Scholar 

  • Park, J. S., Simpson, A. G. B., Brown, S., & Cho, B. C. (2009). Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. Protist, 160, 265–283.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. S., Simpson, A. G. B., Lee, W. J., & Cho, B. C. (2007). Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist, 158, 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. J. (1988). The evolution of Protozoa. Memórias do Instituto Oswaldo Cruz, 83, 580–600.

    Article  PubMed  Google Scholar 

  • Patterson, D. J., & Brugerolle, G. (1988). The ultrastructural identity of Stephanopogon apogon and the relatedness of the genus to other kinds of protists. European Journal of Protistology, 23, 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. J., Rogerson, A., & Vørs, N. (2000). Class Heterolobosea. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), The illustrated guide to the protozoa (second ed., pp. 1104–1111). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Perasso, L., Hill, D. R. A., & Wetherbee, R. (1992). Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma, 170, 53–67.

    Article  Google Scholar 

  • Pernin, P., Ataya, A., & Cariou, M. L. (1992). Genetic structure of natural populations of the free-living amoeba, Naegleria lovaniensis. Evidence for sexual reproduction. Heredity, 68, 173–181.

    Article  CAS  Google Scholar 

  • Perty, M. (1852). Zur Kenntniss kleinster Lebensformen nach Bau, Funktionen, Systematik: mit Specialverzeichniss der in der Schweiz beobachteten. Bern: Jent & Reinert.

    Google Scholar 

  • Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Müller, M., & Le Guyader, H. (2000). Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions. Proceedings of the Royal Society of London B: Biological Sciences, 267, 1213–1221.

    Article  CAS  Google Scholar 

  • Plotnikov, A. O., Mylnikov, A. P., & Selivanova, E. A. (2015). Morphology and life cycle of amoeboflagellate Pharyngomonas sp. (Heterolobosea, Excavata) from hypersaline inland Razval Lake. Biology Bulletin, 42, 759–769.

    Article  Google Scholar 

  • Preston, T. M., & King, C. A. (2003). Locomotion and phenotypic transformation of the amoeboflagellate Naegleria gruberi at the water-air interface. Journal of Eukaryotic Microbiology, 50, 245–251.

    Article  PubMed  Google Scholar 

  • Raikov, I. B. (1969). The macronucleus of ciliates. In T. T. Chen (Ed.), Research in protozoology (pp. 1–128). London: Pergamon Press.

    Chapter  Google Scholar 

  • Reeder, W. H., Sanck, J., Hirst, M., Dawson, S. C., & Wolfe, G. V. (2015). The food web of boiling springs lake appears dominated by the heterolobosean Tetramitus thermacidophilus strain BSL. Journal of Eukaryotic Microbiology, 62, 374–390.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt, D. J. (1968). The effects of light on the development of the cellular slime mold Acrasis rosea. American Journal of Botany, 77–86.

    Google Scholar 

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., et al. (2007). Toward resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  • Roger, A. J., Smith, M. W., Doolittle, R. F., & Doolittle, W. (1996). Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3phosphate dehydrogenase. Journal of Eukaryotic Microbiology, 43, 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Roger, A. J., Svärd, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D., et al. (1998). A mitochondrial-like chaperonin 60 gene in Giardia lamblia: Evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 95, 229–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüdinger, M., Fritz-Laylin, L., Polsakiewicz, M., & Knoop, V. (2011). Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA, 17, 2058–2062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawyer, T. K. (1980). Marine amoebae from clean and stressed bottom sediments of the Atlantic Ocean and Gulf of Mexico. Journal of Protozoology, 27, 13–32.

    Article  Google Scholar 

  • Schardinger, F. (1899). Entwicklungskreis einer Amoeba lobosa (Gymnamoeba): Amoeba gruberi. Sitzungsberichte der Keiserlichen Akademie der Wissenschaften in Wien, 108, 713–734.

    Google Scholar 

  • Schuster, F. L. (1975). Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. Tissue and Cell, 7, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, F. L., De Jonckheere, J. F., Moura, H., Sriram, R., Garner, M. M., & Visvesvara, G. S. (2003). Isolation of a thermotolerant Paravahlkampfia sp. from lizard intestine: biology and molecular identification. Journal of Eukaryotic Microbiology, 50, 373–378.

    Article  PubMed  Google Scholar 

  • Sheehan, K. B., Ferris, M. J., & Henson, J. M. (2003). Detection of Naegleria sp. in a thermal, acidic stream in Yellowstone National Park. Journal of Eukaryotic Microbiology, 50, 263–265.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, R., Khan, N.A. (2014). Primary amoebic meningoencephalitis caused by Naegleria fowleri: An old enemy presenting new challenges. PLoS Neglected Tropical Diseases, 8, e3017.

    Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organisation phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Smirnov, A. V., & Brown, S. (2004). Guide to the methods of study and identification of soil gymnamoebae. Protistology, 3, 148–190.

    Google Scholar 

  • Smirnov, A. V., & Fenchel, T. (1996). Vahlkampfia anaerobica n. sp. and Vannella peregrinia n. sp. (Rhizopoda): anaerobic amoebae from a marine sediment. Archiv für Protistenkunde, 147, 189.

    Article  Google Scholar 

  • Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences, 112, 8827–8834.

    Article  CAS  Google Scholar 

  • Stevens, A. R., Gallup, E. D., & Willaert, E. (1978). Evaluation of membrane-bound black bodies in trophozoites and cysts of Naegleria spp. Journal of Invertebrate Pathology, 31, 63–76.

    Article  CAS  PubMed  Google Scholar 

  • Tice, A.K., Silberman, J.D., Walthall, A.C., Le Khoa, N.D., Spiegel, F.W., Brown, M.W. (2016). Sorodiplophrys stercorea: another novel lineage of sorocarpic multicellularity. Journal of Eukaryotic Microbiology, 63:623–628 in press.

    Google Scholar 

  • Tyml, T., Lares-Jiménez, L. F., Kostka, M., & Dyková, I. (2016). Neovahlkampfia nana n. sp. reinforcing an underrepresented subclade of Tetramitia, Heterolobosea. Journal of Eukaryotic Microbiology. doi:10.1111/jeu.12341.

    Google Scholar 

  • Valach, M., Burger, G., Gray, M. W., Lang, B.F. (2014). Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Research, 42:13764–13777.

    Google Scholar 

  • van Tieghem, M. (1880). Sur quelques myxomycetes a plasmode agrege. Bulletin of the Society of Botany France, 27, 317–322.

    Article  Google Scholar 

  • Visvesvara, G. S. (2010). Free-living amebae as opportunistic agents of human disease. Journal of Neuroparasitology, 1, 1–13.

    Article  Google Scholar 

  • Visvesvara, G. S., Moura, H., & Schuster, F. L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology and Medical Microbiology, 50, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara, G. S., Sriram, R., Qvarnstrom, Y., Bandyopadhyay, K., Da Silva, A. J., Pieniazek, N. J., et al. (2009). Paravahlkampfia francinae n. sp. masquerading as an agent of primary amoebic meningoencephalitis. Journal of Eukaryotic Microbiology, 56, 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Waggoner, B. M. (1993). Naegleria-like cysts in cretaceous amber from central Kansas. Journal of Eukaryotic Microbiology, 40, 97–100.

    Article  Google Scholar 

  • Walsh, C. J. (2007). The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amoebae into flagellates. European Journal of Cell Biology, 86, 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, C.J. (2012). The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria. PLoS ONE, 7, e34763.

    Google Scholar 

  • Willmer, E. N. (1956). Factors influencing the acquisition of flagella by the amoeba, Naegleria gruberi. Journal of Experimental Biology, 33, 583–603.

    CAS  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2008). Ultrastructure and molecular phylogeny of Stephanopogon minuta: An enigmatic microeukaryote from marine interstitial environments. European Journal of Protistology, 44, 241–253.

    Article  PubMed  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2012). Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. Protoplasma, 249, 859–869.

    Article  PubMed  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. The Plant Journal, 75, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Simpson, A. G. B., & Leander, B. S. (2013). Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist, 164, 423–439.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Táborský, P., Silberman, J. D., Pánek, T., Čepička, I., & Simpson, A. G. B. (2015). Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist, 166, 468–491.

    Article  PubMed  Google Scholar 

  • Zysset-Burri, D. C., Müller, N., Beuret, C., Heller, M., Schürch, N., Gottstein, B., & Wittwer, M. (2014). Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics, 15, 1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Cyberinfrastructure for Phylogenetic Research Science (CIPRES) Gateway v 3.3, where all phylogenetic analyses were conducted. We also thank Jong Soo Park (Kyungpook National University), Won Je Lee (Kyungnam University), Ivan Čepička (Charles University) Petr Táborský (Charles University), and Yana Eglit (Dalhousie University) for unpublished micrographs. AGBS gratefully acknowledges the support of the Canadian Institute for Advanced Research (CIfAR), program in Integrated Microbial Biodiversity. TP thanks to the Czech Science Foundation project 13-24983S for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Pánek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Pánek, T., Simpson, A.G.B., Brown, M.W., Dexter Dyer, B. (2016). Heterolobosea. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics