Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

In the present there is a great necessity of suitable biocatalysts with high process performance, as a “greener” complementary alternative to the chemical synthesis. It is expected that in the coming decade, up to 40% of bulk chemical synthesis processes could be substituted by enzymatic catalysis. The identification and optimization of an appropriate enzyme represent important requirements to obtain a successful and efficient enzymatic process. In this context, the establishment of enzymatic processes in the industry is mainly a problem of finding and optimizing new enzymes. In this sense, nature is the richest reservoir from which enzymes can be isolated because they are continuously changing and evolving as a consequence of natural processes of selection. We are now taking advantages of sequencing and extensive screening technologies to develop enzyme discovery strategies and to identify microbial enzymes with improved and unusual activities and specificities. These approaches, in combination with modern protein engineering methods and distinct combinatorial and rational methods, will increase our chances to generate new stabilized biocatalysts that fit industrial requirements. Here, we review the methodologies, obstacles, and solving problems around metagenomics investigations to screen for enzymes with activities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139. doi:10.3390/biom4010117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci 107(9):4004–4009. doi:10.1073/pnas.0910781107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349. doi:10.1080/10242420802390457

    Article  CAS  Google Scholar 

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22(5):618–626. doi:10.1016/j.copbio.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  • Bargiela R, Gertler C, Magagnini M, Mapelli F, Chen J, Daffonchio D et al (2015) Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data. Front Microbiol 6:1270. doi:10.3389/fmicb.2015.01270

    Article  PubMed  PubMed Central  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science (New York, NY) 289(5486):1902–1906. doi:10.1126/science.289.5486.1902

    Article  Google Scholar 

  • Bell PJL, Sunna A, Curach NC, Bergquist PL, Gibbs MD, Nevalainen H (2002) Prospecting for novel lipase genes using PCR a. Microbiology 148(8):2283–2291. doi:10.1099/00221287-148-8-2283

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26. doi:10.1038/ja.2005.1

    Article  PubMed  Google Scholar 

  • Bergquist PL, Hardiman EM, Ferrari BC, Winsley T (2009) Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles . doi:10.1007/s00792-009-0236-4 Springer Japan

    Google Scholar 

  • Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264(15):8935–8940

    CAS  PubMed  Google Scholar 

  • Bommarius AS, Paye MF, Bornscheuer UT, Pohl M, Lutz S, Ma SK et al (2013) Stabilizing biocatalysts. Chem Soc Rev 42(15):6534. doi:10.1039/c3cs60137d

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi:10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  • Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106(34):14195–14200. doi:10.1073/pnas.0903542106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzostowicz PC, Walters DM, Thomas SM, Nagarajan V, Rouvière PE (2003) mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 69(1):334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen I-C, Thiruvengadam V, Lin W-D, Chang H-H, Hsu W-H (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 72(1–2):153–169. doi:10.1007/s11103-009-9558-y

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi:10.1016/j.mimet.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443. doi:10.1016/S0958-1669(03)00099-5

    Article  CAS  PubMed  Google Scholar 

  • Coll-Lladó M, Acinas SG, Pujades C, Pedrós-Alió C (2011) Transcriptome fingerprinting analysis: an approach to explore gene expression patterns in marine microbial communities. PLoS ONE 6(8):e22950. doi:10.1371/journal.pone.0022950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Craig JW, Chang F-Y, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76(5):1633–1641. doi:10.1128/AEM.02169-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis TP, Sloan WT (2005) Microbiology. Exploring microbial diversity – a vast below. Science (New York, NY) 309(5739):1331–1333. doi:10.1126/science.1118176

    Article  CAS  Google Scholar 

  • Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18(6): 618–640.

    Google Scholar 

  • de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29(1):75–83. doi:10.1016/j.biotechadv.2010.09.001

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CCCR (2016) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol. doi:10.1111/1751-7915.12363

    PubMed  PubMed Central  Google Scholar 

  • Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38(1):41–55. doi:10.1007/s12033-007-0035-z

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Arrojo L, Guazzaroni M-E, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733. doi:10.1016/j.copbio.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Martínez-Abarca F, Golyshin PN (2005a) Mining genomes and “metagenomes” for novel catalysts. Curr Opin Biotechnol 16(6):588–593. doi:10.1016/j.copbio.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VAP, Yakimov MM et al (2005b) Microbial enzymes mined from the urania deep-sea hypersaline anoxic basin. Chem Biol 12(8):895–904. doi:10.1016/j.chembiol.2005.05.020

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Dos Santos VAPM et al (2005c) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7(12):1996–2010. doi:10.1111/j.1462-2920.2005.00920.x

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(3):207–214. doi:10.1016/j.mib.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123. doi:10.1159/000142898

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Golyshin PN (2010) Screening metagenomic libraries for laccase activities. Methods Mol Biol (Clifton, NJ) 668:189–202. doi:10.1007/978-1-60761-823-2_13

    Article  CAS  Google Scholar 

  • Ferrer M, Bargiela R, Martínez-Martínez M, Mir J, Koch R, Golyshina OV, Golyshin PN (2015) Biodiversity for biocatalysis: a review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes. Biocat Biotransform 33(5–6):235–249. doi:10.3109/10242422.2016.1151416

    Article  CAS  Google Scholar 

  • Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34. doi:10.1111/1751-7915.12309

    Article  CAS  PubMed  Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6(9):948–958. doi:10.1111/j.1462-2920.2004.00643.x

    Article  CAS  PubMed  Google Scholar 

  • Gabor E, Liebeton K, Niehaus F, Eck J, Lorenz P (2007) Updating the metagenomics toolbox. Biotechnol J 2(2):201–206. doi:10.1002/biot.200600250

    Article  CAS  PubMed  Google Scholar 

  • Galvão TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23(10):497–506. doi:10.1016/j.tibtech.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  • Ge J, Lu D, Liu Z, Liu Z (2009) Recent advances in nanostructured biocatalysts. Biochem Eng J 44(1):53–59. doi:10.1016/j.bej.2009.01.002

    Article  CAS  Google Scholar 

  • Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, Methé BA, Yooseph S (2010) METAREP: JCVI metagenomics reports – an open source tool for high-performance comparative metagenomics. Bioinformatics (Oxford, England) 26(20):2631–2632. doi:10.1093/bioinformatics/btq455

    Article  CAS  Google Scholar 

  • Golyshina OV, Lünsdorf H, Kublanov IV, Goldenstein NI, Hinrichs KU, Golyshin PN (2016) The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. Nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. Int J Syst Evol Microbiol 66(1):332–340. doi:10.1099/ijsem.0.000725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–225

    CAS  Google Scholar 

  • Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 90(2):207–214. doi:10.1016/S0960-8524(03)00110-X

    Article  CAS  PubMed  Google Scholar 

  • Gong J-S, Lu Z-M, Li H, Zhou Z-M, Shi J-S, Xu Z-H (2013) Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol 97(15):6603–6611. doi:10.1007/s00253-013-4932-8

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Xu X (2005) New opportunity for enzymatic modification of fats and oils with industrial potentials. Org Biomol Chem 3(14):2615–2619. doi:10.1039/b506763d

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32. doi:10.1007/s00253-002-0975-y

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol . doi:10.1007/s00253-004-1568-8Springer-Verlag

    Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int . doi:10.1155/2013/329121Hindawi Publishing Corporation

    PubMed  PubMed Central  Google Scholar 

  • Gustafsson H, Küchler A, Holmberg K, Walde P, Mateo C, Palomo JM et al (2015) Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J Mater Chem B 3(30):6174–6184. doi:10.1039/C5TB00543D

    Article  CAS  Google Scholar 

  • Hallin PF, Binnewies TT, Ussery DW, Fleischmann RD, Adams MD, White O et al (2008) The genome BLASTatlas – a GeneWiz extension for visualization of whole-genome homology. Mol BioSyst 4(5):363. doi:10.1039/b717118h

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev: MMBR 68(4):669–685. doi:10.1128/MMBR.68.4.669-685.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington ED, Singh AH, Doerks T, Letunic I, von Mering C, Jensen LJ et al (2007) Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proc Natl Acad Sci U S A 104(35):13913–13918. doi:10.1073/pnas.0702636104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Deng Y (2012) Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 23(1):49–55. doi:10.1016/j.copbio.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10:395–402. doi:10.1016/0167-7799(92)90282-Z

    Article  CAS  PubMed  Google Scholar 

  • Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419. doi:10.1016/j.tim.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71(2):197–207. doi:10.1111/j.1574-6941.2009.00801.x

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T et al (2015) Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron 67:379–385. doi:10.1016/j.bios.2014.08.059

    Article  CAS  PubMed  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3(1):39–46. doi:10.1016/S1367-5931(99)80008-8

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E et al (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26(9):1029–1034. doi:10.1038/nbt.1488

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczak KA, Scott KP, Kelly D, Aminov RI (2009) Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 75(6):1717–1722. doi:10.1128/AEM.02206-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD (2010) Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 10(4):687–699. doi:10.1002/pmic.200900519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246. doi:10.1038/35051719

    Article  CAS  PubMed  Google Scholar 

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol 5(1):46–56 doi:68724

    Article  CAS  PubMed  Google Scholar 

  • Kodzius R (2016) Single-cell technologies in environmental omics. Gene 576(2):701–707. doi:10.1016/j.gene.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  • Koeller KM, Wong C-H (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240. doi:10.1038/35051706

    Google Scholar 

  • Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135. doi:10.3923/biotech.2011.121.135

    Article  CAS  Google Scholar 

  • Kumar V, Marín-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol . doi:10.1007/s11274-015-2005-0Springer Netherlands

    Google Scholar 

  • Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT et al (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12(8):e1001920. doi:10.1371/journal.pbio.1001920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi:10.1186/s40168-015-0086-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196. doi:10.3389/fmicb.2015.01196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei C, Shin Y, Liu J, Ackerman EJ (2002) Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc 124(38):11242–11243. doi:10.1021/ja026855o

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21(14):3269–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol . doi:10.1007/s00253-014-5961-7Springer Berlin Heidelberg

    Google Scholar 

  • Liu M, Dai X, Guan R, Xu X (2014) Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal Commun 55:6. doi:10.1016/j.catcom.2014.06.002

    Article  CAS  Google Scholar 

  • Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger K-E, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2(1):22–33. doi:10.1021/sb3000657

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature 3:510–516. doi:10.1038/nrmicro1161

    CAS  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles Life Under Extreme Cond 4(2):91–98

    Article  CAS  Google Scholar 

  • Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475. doi:10.3389/fmicb.2015.00475

    PubMed  PubMed Central  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9(1):386. doi:10.1186/1471-2105-9-386

    Article  CAS  Google Scholar 

  • Mirete S, de Figueras CG, Gonzalez-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73(19):6001–6011. doi:10.1128/AEM.00048-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitidieri S, Souza Martinelli AH, Schrank A, Vainstein MH (2006) Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresour Technol 97(10):1217–1224. doi:10.1016/j.biortech.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  • Monsan P, O’Donohue MJ (2010) In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology in the food and feed sector. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527630233

    Chapter  Google Scholar 

  • Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springer Plus 3:365. doi:10.1186/2193-1801-3-365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10(6):1526–1535. doi:10.1111/j.1462-2920.2008.01568.x

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D, Zhang X, Jiang Z-H, Audet A, Paice MG, Renaud S, Tsang A (2008) Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enzym Microb Technol 43(2):130–136. doi:10.1016/j.enzmictec.2007.11.012

    Article  CAS  Google Scholar 

  • Park S-J, Kang C-H, Chae J-C, Rhee S-K, Allgaier M, Uphoff H et al (2008) Metagenome microarray for screening of fosmid clones containing specific genes. FEMS Microbiol Lett 284(1):28–34. doi:10.1111/j.1574-6968.2008.01180.x

    Article  CAS  PubMed  Google Scholar 

  • Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS: J Integr Biol 11(3):252–279. doi:10.1089/omi.2007.0004

    Article  CAS  Google Scholar 

  • Placido A, Hai T, Ferrer M, Chernikova TN, Distaso M, Armstrong D et al (2015) Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase. Appl Microbiol Biotechnol 99:10031–10046. doi:10.1007/s00253–015-6873-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic A, Tchigvintsev A, Tran H, Chernikova TN, Golyshina OV, Yakimov MM et al (2015) Metagenomics as a tool for enzyme discovery: hydrolytic enzymes from marine-related metagenomes. Adv Exp Med Biol 883:1–20. doi:10.1007/978-3-319-23603-2_1

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649. doi:10.1038/35001054

    Article  CAS  PubMed  Google Scholar 

  • Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC et al (2005) Community proteomics of a natural microbial biofilm. Science (New York, NY) 308(5730):1915–1920. doi:10.1126/science. 1109070

    Article  CAS  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989. doi:10.1111/j.1462-2920.2004.00664.x

    Article  CAS  PubMed  Google Scholar 

  • Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N et al (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc 9(5):1038–1048. doi:10.1038/nprot.2014.067

    Article  CAS  PubMed  Google Scholar 

  • Sabree ZL, Rondon MR., Handelsman J (2009) Metagenomics. In: Schaechter M (ed), Encyclopedia of microbiology, 3rd ed. Amsterdam, the Netherlands, Elsevier Academic Press. p 622–633.

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (New York, NY) 239(4839):487–491. doi:10.1126/science.2448875

    Article  CAS  Google Scholar 

  • Scanlon TC, Dostal SM, Griswold KE (2014) A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 111(2):232–243. doi:10.1002/bit.25019

    Article  CAS  PubMed  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20(12):515–521. doi:10.1016/S0167-7799(02)02073-5

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92. doi:10.1371/journal.pcbi.0020092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5(12):e1000605. doi:10.1371/journal.pcbi.1000605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheikh Abdul Hamid N, Zen HB, Tein OB, Halifah YM, Saari N, Bakar FA (2003) Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring. World J Microbiol Biotechnol 19(9):961–968. doi:10.1023/B:WIBI.0000007330.84569.39

    Article  CAS  Google Scholar 

  • Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M et al (2008) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20(11):3567–3573. doi:10.1021/cm7029954

    Article  CAS  Google Scholar 

  • Simon C, Herath J, Rockstroh S, Daniel R (2009) Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol 75(9):2964–2968. doi:10.1128/AEM.02644-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28(3):111–116. doi:10.1016/j.tibtech.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, Sermon K (2006) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1(4):1965–1970. doi:10.1038/nprot.2006.326

    Article  CAS  PubMed  Google Scholar 

  • Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV et al (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75(17):5501–5506. doi:10.1128/AEM.00121-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R et al (2015) The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 99(5):2165–2178. doi:10.1007/s00253-014-6038-3

    Article  CAS  PubMed  Google Scholar 

  • Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1(8):956–968. doi:10.1021/cs200124a

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Turnbaugh PJ, Ley RE, Ley RE, Hamady M, Hamady M et al (2007) The human microbiome project. Nature 449(7164):804–810. doi:10.1038/nature06244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. doi:10.1038/nature02340

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2010) Substrate-induced gene expression screening: a method for high-throughput screening of metagenome libraries. Methods Mol Biol (Clifton, NJ) 668:153–168. doi:10.1007/978-1-60761-823-2_10

    Article  CAS  Google Scholar 

  • Uchiyama T, Miyazaki K (2013) Metagenomic screening for aromatic compound-responsive transcriptional regulators. PLoS ONE 8(9):e75795. doi:10.1371/journal.pone.0075795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93. doi:10.1038/nbt1048

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Solís T, Rebolledo AF, Sevilla M, Valle-Vigón P, Bomatí-Miguel O, Fuertes AB, Tartaj P (2009) Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem Mater 21(9):1806–1814. doi:10.1021/cm8005937

    Article  CAS  Google Scholar 

  • Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol. doi:10.1016/S1369-5274(03)00060-2

    PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science (New York, NY) 304(5667):66–74. doi:10.1126/science.1093857

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev: MMBR 65(1):1–43. doi:10.1128/MMBR.65.1.1-43.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DM, Russ R, Knackmuss H-J, Rouvière PE (2001) High-density sampling of a bacterial operon using mRNA differential display. Gene 273(2):305–315. doi:10.1016/S0378-1119(01)00597-2

    Article  CAS  PubMed  Google Scholar 

  • Wexler M, Bond PL, Richardson DJ, Johnston AWB (2005) A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7(12):1917–1926. doi:10.1111/j.1462-2920.2005.00854.x

    Article  CAS  PubMed  Google Scholar 

  • Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12(9):1434–1444. doi:10.1101/gr.130502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ZE, Brimble MA, Pikuta EV, Hoover RB, Tang J, MacElroy RD et al (2009) Molecules derived from the extremes of life. Nat Prod Rep 26(1):44–71. doi:10.1039/B800164M

    Article  CAS  PubMed  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6(2):e1000667. doi:10.1371/journal.pcbi.1000667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H et al (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE 4(4):e5299. doi:10.1371/journal.pone.0005299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN et al (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7(9):1426–1441. doi:10.1111/j.1462-5822.2005.00829.x

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645. doi:10.1038/nrmicro3330

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J et al (2007) Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in acid mine drainages and bioleaching systems. J Microbiol Methods 70(1):165–178. doi:10.1016/j.mimet.2007.04.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Community project KILL-SPILL (FP7-KBBE-2012-312139) European Union’s Horizon 2020 Project INMARE (grant agreement No 634486. This work was further funded by grants BIO2011-25012, PCIN-2014-107, and BIO2014-54494-R from the Spanish Ministry of Economy and Competitiveness. The present investigation was funded by the Spanish Ministry of Economy and Competitiveness, the UK Biotechnology and Biological Sciences Research Council (BBSRC) (Grant Nr BB/MO29085/1) within the ERA NET-IB2 program, grant number ERA-IB-14-030. MF gratefully acknowledges the financial support provided by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Golyshin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Distaso, M.A., Tran, H., Ferrer, M., Golyshin, P.N. (2016). Metagenomic Mining of Enzyme Diversity. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_216-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_216-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics