Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The development of industrial processes for large-scale production of biofuels , in particular biodiesel , is one of the most pursued purposes of research teams, companies, and governments all in the world, as consequence of a necessary reduction of CO2 emissions and the need of renewable and affordable energy sources.

However, several constraints strongly limit biodiesel production, and its use, basically, is as additive blended with petrodiesel.

Microalgae are photosynthetic microorganisms which can convert CO2 into triacylglycerols, and then, since decades, they have been considered as a potential innovative feedstock for biodiesel production, able to successfully replace oil crops.

Despite the considerable research and funding efforts, up to now biodiesel from microalgae is still an expensive process, because no significant reduction in cost of the downstream processing of biomass (biomass separation and drying and oil extraction) has been achieved.

Therefore, biodiesel production may be considered as part of a hypothetical process which produces several high-value added microalgae-based products, as pharmaceuticals or nutraceuticals.

However, research and capital investments in biodiesel production from microalgae show a positive trend up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS ONE 7:e42949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cesarini S, Pastor FIJ, Nielsen PM, Diaz P (2015) Moving towards a competitive fully enzymatic biodiesel process. Sustainability 7:7884–7903

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  CAS  Google Scholar 

  • de Jaeger L, Verbeek R, Draaisma R, Martens D, Springer J, Eggink G et al (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan JL, Andre C, CC X (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Fork DC, Murata N, Sato N (1979) Effect of growth temperature on the lipid and fatty acid composition, and the dependence on temperature of light-induced redox reactions of cytochrome f and of light energy redistribution in the thermophilic Blue-Green Alga Synechococcus lividus. Plant Physiol 63:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J 14:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464

    Article  CAS  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology – from genetics to synthetic biology. Biotechnol Adv 33:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Hobden R (2014) Commercializing enzymatic biodiesel production. Int News Fats Oils Relat Mater 25:143–144

    Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169

    Article  CAS  Google Scholar 

  • Holton RW, Blecker HH, Stevens TS (1968) Fatty acids in blue-green algae: possible relation to phylogenetic position. Science 160:545–547

    Article  CAS  PubMed  Google Scholar 

  • Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign

    Book  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2014) Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels. J Appl Phycol 27:1881–1889

    Article  Google Scholar 

  • Lu J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  CAS  Google Scholar 

  • Ma YH, Wang X, Niu YF, Yang ZK, Zhang MH, Wang ZM, Yang WD, Liu JS, Li HY (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories 13:1–9

    Article  Google Scholar 

  • Maeda Y, TateishiT NY, Muto M, Yoshino T, Kisailus D, Tanaka T (2016) Peptide-mediated microalgae harvesting method for efficient biofuel production. Biotechnol Biofuels 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallick N, Mandal S, Singh AK, Bishai M, Dash A (2012) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145

    Article  CAS  Google Scholar 

  • Mata TN, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178

    Article  Google Scholar 

  • Mittelbach M, Remschmidt C (2005) Biodiesel – the comprehensive handbook. Martin Mittelbach Publisher, Graz

    Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  CAS  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB et al (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MA (2015) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:511–525

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  • Robles-Heredia JC, Sacramento-Rivero JC, Canedo-LópezY R-MA, Vilchiz-Bravo LE (2015) A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng 32:335–345

    Article  CAS  Google Scholar 

  • Salis A, Monduzzi M, Solinas V (2007) Use of lipases for the production of Biodiesel. In: Polaina J, MacCabe AP (eds) Industrial Enzymes. Springer, Dordrecht, pp 317–339

    Chapter  Google Scholar 

  • Salis A, Nicolò M, Guglielmino S, Solinas V (2010a) Biodiesel from microalgae. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin/Heidelberg, pp 2827–2839

    Chapter  Google Scholar 

  • Salis A, Casula MF, Bhattacharyya MS, Pinna MM, Solinas V, Monduzzi M (2010b) Physical and chemical lipase adsorption on sba-15: effect of different interactions on enzyme loading and catalytic performance. ChemCatChem 2:322–329

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, USA.

    Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lee TM, Chang JS (2015) Microalgal drying and cell disruption – recent advances. Bioresour Technol 184:258–266

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • U.S. Energy Information Administration (EIA) (2016) Monthly Energy Review, July 2016. www.eia.gov/mer

  • United Nations Environment Project (2009) Towards sustainable production and use of resources: assessing biofuels. http://www.unep.org/PDF/Assessing_Biofuels.pdf

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ et al (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    Article  PubMed  Google Scholar 

  • Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, GGuo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang RRC, Hu Z (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. P. Guglielmino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Nicolò, M.S., Guglielmino, S.P.P., Solinas, V., Salis, A. (2016). Biodiesel from Microalgae. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_210-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_210-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics