Skip to main content

Real-Time Full-Body Pose Synthesis and Editing

  • Living reference work entry
  • First Online:
Handbook of Human Motion
  • 192 Accesses

Abstract

Posing character has always been playing an important role in character animation and interactive applications such as computer games. However, such a task is time-consuming and labor-intensive. In order to improve the efficiency in character posing, researchers in computer graphics have been working on a wide variety of semi- or fully automatic approaches in creating full-body poses, ranging from traditional approaches like inverse kinematics (IK), data-driven approaches which make use of captured motion data, as well as direct pose manipulation through intuitive interfaces. In this book chapter, we will introduce the aforementioned techniques and also discuss their applications in animation production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baraff D (1996) Linear-time dynamics using lagrange multipliers. In: SIGGRAPH ’96: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM, New York, pp 137–146. doi:10.1145/237170.237226

    Chapter  Google Scholar 

  • Chai J, Hodgins JK (2005) Performance animation from low-dimensional control signals. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 papers. ACM, New York, pp 686–696. doi:10.1145/1186822.1073248

    Chapter  Google Scholar 

  • Choi MG, Yang K, Igarashi T, Mitani J, Lee J (2012) Retrieval and visualization of human motion data via stick figures. Comput Graph Forum 31(7pt1):2057–2065. doi:10.1111/j.1467-8659.2012.03198.x

    Article  Google Scholar 

  • Davis J, Agrawala M, Chuang E, Popović Z, Salesin D (2003) A sketching interface for articulated figure animation. In: Proceedings of the 2003 ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’03. Eurographics Association, Aire-la-Ville, pp 320–328 http://dl.acm.org/citation.cfm?id=846276.846322

    Google Scholar 

  • Esposito C, Paley WB, Ong J (1995) Of mice and monkeys: a specialized input device for virtual body animation. In: Proceedings of the 1995 symposium on interactive 3D graphics, I3D ’95. ACM, New York, p 109–ff. doi:10.1145/199404.199424

    Chapter  Google Scholar 

  • Gleicher M (1998) Retargeting motion to new characters. In: SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques. ACM Press, New York, pp 33–42. doi:10.1145/280814.280820

    Chapter  Google Scholar 

  • Grochow K, Martin SL, Hertzmann A, Popović Z (2004) Style-based inverse kinematics. ACM Trans Graph 23(3):522–531. doi:10.1145/1015706.1015755

    Article  Google Scholar 

  • Guay M, Cani MP, Ronfard R (2013) The line of action: an intuitive interface for expressive character posing. ACM Trans Graph 32(6):205:1–205:8. doi:10.1145/2508363.2508397

    Article  Google Scholar 

  • Hahn F, Mutzel F, Coros S, Thomaszewski B, Nitti M, Gross M, Sumner RW (2015) Sketch abstractions for character posing. In: Proceedings of the 14th ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’15. ACM, New York, pp 185–191. doi:10.1145/2786784.2786785

    Chapter  Google Scholar 

  • Hämäläinen P, Rajamäki J, Liu CK (2015) Online control of simulated humanoids using particle belief propagation. ACM Trans Graph 34(4):81:1–81:13. doi:10.1145/2767002

    Article  MATH  Google Scholar 

  • Harish P, Mahmudi M, Callennec BL, Boulic R (2016) Parallel inverse kinematics for multithreaded architectures. ACM Trans Graph 35(2):19:1–19:13. doi:10.1145/2887740

    Article  Google Scholar 

  • Ho ESL, Komura T (2009) Character motion synthesis by topology coordinates. In: Dutr’e P, Stamminger M (eds) Computer graphics forum (Proceedings of Eurographics 2009), Munich, vol 28, pp 299–308

    Google Scholar 

  • Ho ESL, Komura T (2011) A finite state machine based on topology coordinates for wrestling games. Comput Animat Virtual Worlds 22(5):435–443. doi:10.1002/cav.376

    Article  Google Scholar 

  • Ho ESL, Shum HPH (2013) Motion adaptation for humanoid robots in constrained environments. In: Robotics and automation (ICRA), 2013 I.E. international conference on, pp 3813–3818. doi:10.1109/ICRA.2013.6631113

    Google Scholar 

  • Ho ESL, Komura T, Ramamoorthy S, Vijayakumar S (2010a) Controlling humanoid robots in topology coordinates. In: Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp 178–182. doi:10.1109/IROS.2010.5652787

    Google Scholar 

  • Ho ESL, Komura T, Tai CL (2010b) Spatial relationship preserving character motion adaptation. ACM Trans Graph 29(4):1–8. doi:10.1145/1778765.1778770

    Article  Google Scholar 

  • Ho ESL, Chan JCP, Komura T, Leung H (2013a) Interactive partner control in close interactions for real-time applications. ACM Trans Multimed Comput Commun Appl 9(3):21:1–21:19. doi:10.1145/2487268.2487274

    Article  Google Scholar 

  • Ho ESL, Shum HPH, Ym C, PC Y (2013b) Topology aware data-driven inverse kinematics. Comput Graph Forum 32(7):61–70. doi:10.1111/cgf.12212

    Article  Google Scholar 

  • Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3d freeform design. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley, New York, pp 409–416. doi:10.1145/311535.311602

    Chapter  Google Scholar 

  • Isrozaidi N, Ismail N, Oshita M (2010) Data glove-based interface for real-time character motion control. In: ACM SIGGRAPH ASIA 2010 Posters, SA ’10. ACM, New York, p 5:1. doi:10.1145/1900354.1900360

    Google Scholar 

  • Jacobson A, Panozzo D, Glauser O, Pradalier C, Hilliges O, Sorkine-Hornung O (2014) Tangible and modular input device for character articulation. ACM Trans Graph 33(4):82:1–82:12. doi:10.1145/2601097.2601112

    Article  Google Scholar 

  • Kallmann M (2008) Analytical inverse kinematics with body posture control. Comput Animat Virtual Worlds 19(2):79–91

    Article  Google Scholar 

  • Komura T, Lam WC (2006) Real-time locomotion control by sensing gloves. Comput Animat Virtual Worlds 17(5):513–525. doi:10.1002/cav.114

    Article  Google Scholar 

  • Komura T, Ho ESL, Lau RW (2005) Animating reactive motion using momentum-based inverse kinematics: motion capture and retrieval. J Vis Comput Animat 16(3–4):213–223. doi:10.1002/cav.v16:3/4

    Google Scholar 

  • Kovar L, Schreiner J, Gleicher M (2002) Footskate cleanup for motion capture editing. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 97–104. doi:10.1145/545261.545277

    Google Scholar 

  • Kulpa R, Multon F, Arnaldi B (2005) Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum 24(3):343–351. doi:10.1111/j.1467-8659.2005.00859.x

    Article  Google Scholar 

  • Kyto M, Dhinakaran K, Martikainen A, Hamalainen P (2015) Improving 3d character posing with a gestural interface. IEEE Comput Graph Appl. doi:10.1109/MCG.2015.117

    Google Scholar 

  • Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in neural information processing systems (Proceedings of NIPS 2003). MIT Press, Cambridge, MA, pp 329–336

    Google Scholar 

  • Lee J, Shin SY (1999) A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing, New York, pp 39–48. doi:10.1145/311535.311539

    Chapter  Google Scholar 

  • Lin J, Igarashi T, Mitani J, Liao M, He Y (2012) A sketching interface for sitting pose design in the virtual environment. IEEE Trans Vis Comput Graph 18(11):1979–1991. doi:10.1109/TVCG.2012.61

    Article  Google Scholar 

  • Liu H, Wei X, Chai J, Ha I, Rhee T (2011) Realtime human motion control with a small number of inertial sensors. In: Symposium on interactive 3D graphics and games, I3D ’11. ACM, New York, pp 133–140. doi:10.1145/1944745.1944768

    Chapter  Google Scholar 

  • Lu J, Liu X (2014) Foot plant detection for motion capture data by curve saliency. In: Computing, Communication and Networking Technologies (ICCCNT), 2014 international conference on, pp 1–6. doi:10.1109/ICCCNT.2014.6963001

    Google Scholar 

  • Lyard E, Magnenat-Thalmann N (2008) Motion adaptation based on character shape. Comput Animat Virtual Worlds 19(3–4):189–198. doi:10.1002/cav.v19:3/4

    Article  Google Scholar 

  • Leap Motion (2016, n.d.) https://www.leapmotion.com/

  • Nakamura Y, Hanafusa H (1986) Inverse kinematics solutions with singularity robustness for robot manipulator control. J Dyn Syst Meas Control 108:163–171

    Article  MATH  Google Scholar 

  • Numaguchi N, Nakazawa A, Shiratori T, Hodgins JK (2011) A puppet interface for retrieval of motion capture data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’11. ACM, New York, pp 157–166. doi:10.1145/2019406.2019427

    Chapter  Google Scholar 

  • Oshita M, Senju Y, Morishige S (2013) Character motion control interface with hand manipulation inspired by puppet mechanism. In: Proceedings of the 12th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, VRCAI ’13. ACM, New York, pp 131–138. doi:10.1145/2534329.2534360

    Google Scholar 

  • Rhodin H, Tompkin J, Kim KI, Kiran V, Seidel HP, Theobalt C (2014) Interactive motion mapping for real-time character control. Comput Graph Forum (Proc Eurograph) 33(2):273–282. doi:10.1111/cgf.12325

    Article  Google Scholar 

  • Rose C, Cohen MF, Bodenheimer B (1998) Verbs and adverbs: multidimensional motion interpolation. IEEE Comput Graph Appl 18:32–40. doi:10.1109/38.708559

    Article  Google Scholar 

  • Shin HJ, Lee J, Shin SY, Gleicher M (2001) Computer puppetry: an importance-based approach. ACM Trans Graph 20(2):67–94. doi:10.1145/502122.502123

    Article  Google Scholar 

  • Shum HPH, Komura T, Yamazaki S (2007) Simulating competitive interactions using singly captured motions. In: Proceedings of ACM virtual reality software technology 2007, pp 65–72

    Google Scholar 

  • Shum HPH, Komura T, Yamazaki S (2008) Simulating interactions of avatars in high dimensional state space. In: ACM SIGGRAPH symposium on interactive 3D graphics (i3D) 2008, pp 131–138

    Google Scholar 

  • Wang LCT, Chen CC (1991) A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans Robot Autom 7(4):489–499. doi:10.1109/70.86079

    Article  MathSciNet  Google Scholar 

  • Wei XK, Chai J (2011) Intuitive interactive human-character posing with millions of example poses. IEEE Comput Graph Appl 31:78–88. doi:10.1109/MCG.2009.132

    Article  Google Scholar 

  • Welman C (1993) Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Frasor University

    Google Scholar 

  • Whitney D (1969) Resolved motion rate control of manipulators and human prostheses. Man-Machine Syst IEEE Trans 10(2):47–53. doi:10.1109/TMMS.1969.299896

    Article  MathSciNet  Google Scholar 

  • Wu X, Tournier M, Reveret L (2011) Natural character posing from a large motion database. IEEE Comput Graph Appl 31(3):69–77. doi:10.1109/MCG.2009.111

    Article  Google Scholar 

  • Yamane K, Nakamura Y (2003) Natural motion animation through constraining and deconstraining at will. IEEE Trans Vis Comput Graph 9(3):352–360. doi:10.1109/TVCG.2003.1207443

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuen Pong C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Edmond S. L., H., Pong C., Y. (2016). Real-Time Full-Body Pose Synthesis and Editing. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics