Skip to main content

Influence of Prosthetic Socket Design and Fitting on Gait

Book cover Handbook of Human Motion
  • 461 Accesses

Abstract

This chapter deals with lower-limb prostheses and, more specifically, the relationship between socket design and the quality of gait and mobility. Prosthetic sockets and suspension systems provide an intimate contact with the residual limb, and their interaction is important for overall comfort, fit, and mobility function. Even though technological advances have led to the enhancement of socket/limb interfaces, prosthesis users still suffer from a variety of problems, particularly related to the high and repetitive loading of the limb during gait. In this chapter, socket designs are reviewed, along with clinical issues relating to their use. This is followed by an examination of the effect of the socket/limb interface on the quality of gait. The chapter concludes with future perspectives and trends in prosthetic/limb interface approaches and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Osman N, Spence W, Solomonidis S, Paul J, Weir A (2010) The patellar tendon bar! Is it a necessary feature? Med Eng Phys 32(7):760–765

    Article  Google Scholar 

  • Alvarez-Camacho M, Urrusti J, Acero MC, Galván D-GC, Rodriguez-Reyes G, Mendoza-Cruz F (2014) Device to assess in-socket pressure distribution for partial foot amputation. Rev Invest Clin 66:S131–S141

    Google Scholar 

  • Andrysek J, Redekop S, Naumann S (2007) Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis. Arch Phys Med Rehabil 88(4):464–470

    Article  Google Scholar 

  • Åström I, Stenström A (2004) Effect on gait and socket comfort in unilateral trans-tibial amputees after exchange to a polyurethane concept. Prosthetics Orthot Int 28(1):28–36

    Google Scholar 

  • Baars E, Geertzen J (2005) Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthetics Orthot Int 29(1):27–37

    Article  Google Scholar 

  • Bateni H, Olney SJ (2002) Kinematic and kinetic variations of below-knee amputee gait. JPO: J Prosthet Orthot 14(1):2–10

    Google Scholar 

  • Beil TL, Street GM (2004) Comparison of interface pressures with pin and suction suspension systems. J Rehabil Res Dev 41(6):821–828

    Article  Google Scholar 

  • Beil TL, Street GM, Covey SJ (2002) Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J Rehabil Res Dev 39(6):693–700

    Google Scholar 

  • Board W, Street G, Caspers C (2001) A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthetics Orthot Int 25(3):202–209

    Article  Google Scholar 

  • Boutaayamou M, Schwartz C, Stamatakis J, Denoël V, Maquet D, Forthomme B, Croisier J-L, Macq B, Verly JG, Garraux G (2015) Development and validation of an accelerometer-based method for quantifying gait events. Med Eng Phys 37(2):226–232

    Article  Google Scholar 

  • Boutwell E, Stine R, Hansen A, Tucker K, Gard S (2012) Effect of prosthetic gel liner thickness on gait biomechanics and pressure distribution within the transtibial socket. J Rehabil Res Dev 49(2):227–240

    Article  Google Scholar 

  • Brunelli S, Delussu AS, Paradisi F, Pellegrini R, Traballesi M (2013) A comparison between the suction suspension system and the hypobaric Iceross Seal-In® X5 in transtibial amputees. Prosthetics Orthot Int 37(6):436–444

    Article  Google Scholar 

  • Childers WL, Siebert S (2015) Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket. Prosthetics Orthot Int 0309364615610660. 40(6):720–768

    Google Scholar 

  • Commean PK, Smith KE, Vannier MW (1997) Lower extremity residual limb slippage within the prosthesis. Arch Phys Med Rehabil 78(5):476–485

    Article  Google Scholar 

  • Convery P, Murray K (2000) Ultrasound study of the motion of the residual femur within a trans-femoral socket during gait. Prosthetics Orthot Int 24(3):226–232

    Article  Google Scholar 

  • Dillon MP, Barker TM (2006) Can partial foot prostheses effectively restore foot length? Prosthetics Orthot Int 30(1):17–23

    Article  Google Scholar 

  • Dillon MP, Barker TM (2008) Comparison of gait of persons with partial foot amputation wearing prosthesis to matched control group: observational study. J Rehabil Res Dev 45(9):1317

    Article  Google Scholar 

  • Dou P, Jia X, Suo S, Wang R, Zhang M (2006) Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin Biomech 21(10):1067–1073. doi:10.1016/j.clinbiomech.2006.06.004

    Article  Google Scholar 

  • Eshraghi A, Abu Osman NA, Gholizadeh H, Karimi M, Ali S (2012) Pistoning assessment in lower limb prosthetic sockets. Prosthetics Orthot Int 36(1):15–24

    Article  Google Scholar 

  • Eshraghi A, Abu Osman NA, Gholizadeh H, Ahmadian J, Rahmati B, Abas WABW (2013a) Development and evaluation of new coupling system for lower limb prostheses with acoustic alarm system. Scientific Reports 3. doi:10.1038/srep02270

    Google Scholar 

  • Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Saevarsson SK, Abas WABW (2013b) An experimental study of the interface pressure profile during level walking of a new suspension system for lower limb amputees. Clin Biomech 28(1):55–60. doi:10.1016/j.clinbiomech.2012.10.002

    Article  Google Scholar 

  • Esposito ER, Whitehead JMA, Wilken JM (2015) Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities. Clin Biomech 30(10):1049–1055

    Article  Google Scholar 

  • Fairley M (2004) MAS socket: a transfemoral revolution. O&P J 6. http://www.oandp.com/articles/2004-06_03.asp

  • Faustini MC, Crawford RH, Neptune RR, Rogers WE, Bosker G (2005) Design and analysis of orthogonally compliant features for local contact pressure relief in transtibial prostheses. J Biomech Eng 127(6):946–951

    Article  Google Scholar 

  • Fergason J, Smith DG (1999) Socket considerations for the patient with a transtibial amputation. Clin Orthop Relat Res 361:76–84

    Article  Google Scholar 

  • Fernández A, Formigo J (2005) Are Canadian prostheses used? A long-term experience. Prosthetics Orthot Int 29(2):177–181

    Article  Google Scholar 

  • Fillauer CE, Pritham CH, Fillauer KD (1989) Evolution and development of the silicone suction socket (3S) for below-knee prostheses. JPO: J Prosthet and Orthot 1(2):92–103

    Google Scholar 

  • Frossard L, Hagberg K, Häggström E, Gow DL, Brånemark R, Pearcy M (2010) Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics. JPO: J Prosthet Orthot 22(1):11–20

    Google Scholar 

  • Furse A, Cleghorn W, Andrysek J (2011) Improving the gait performance of nonfluid-based swing-phase control mechanisms in transfemoral prostheses. IEEE Trans Biomed Eng 58(8):2352–2359

    Article  Google Scholar 

  • Gerschutz MJ, Denune JA, Colvin JM, Schober G (2010) Elevated vacuum suspension influence on lower limb amputee’s residual limb volume at different vacuum pressure settings. JPO: J Prosthet Orthot 22(4):252–256

    Google Scholar 

  • Gholizadeh H, Osman NAA, Lúvíksdóttir ÁG, Eshraghi A, Kamyab M, Abas WABW (2011) A new approach for the pistoning measurement in transtibial prosthesis. Prosthetics Orthot Int 35(4):360–364

    Article  Google Scholar 

  • Gholizadeh H, Abu Osman N, Kamyab M, Eshraghi A, Lúvíksdóttir A, Wan Abas WAB (2012a) Clinical evaluation of two prosthetic suspension systems in a bilateral transtibial amputee. Am J Phys Med Rehabil 91(10):894–898

    Article  Google Scholar 

  • Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, S’varsson SK, WAB WA, Pirouzi GH (2012b) Transtibial prosthetic suspension: less pistoning versus easy donning and doffing. J Rehabil Res Dev 49(9):1321–1330

    Article  Google Scholar 

  • Goujon H, Bonnet X, Sautreuil P, Maurisset M, Darmon L, Fode P, Lavaste F (2006) A functional evaluation of prosthetic foot kinematics during lower-limb amputee gait. Prosthetics Orthot Int 30(2):213–223

    Article  Google Scholar 

  • Greenwald RM, Dean RC, Board WJ (2003) Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. JPO: J Prosthet Orthot 15(3):107–112

    Google Scholar 

  • Hachisuka K, Dozono K, Ogata H, Ohmine S, Shitama H, Shinkoda K (1998b) Total surface bearing below-knee prosthesis: advantages, disadvantages, and clinical implications. Arch Phys Med Rehabil 79(7):783–789

    Article  Google Scholar 

  • Hagberg K, Brånemark R (2009) One hundred patients treated with osseointegrated transfemoral amputation prostheses – rehabilitation perspective. J Rehabil Res Dev 46(3)

    Google Scholar 

  • Hagberg K, Häggström E, Uden M, Brånemark R (2005) Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthetics Orthot Int 29(2):153–163

    Article  Google Scholar 

  • Hagberg K, Brånemark R, Gunterberg B, Rydevik B (2008) Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up. Prosthetics Orthot Int 32(1):29–41

    Article  Google Scholar 

  • Han TR, Chung SG, Shin HI (2003) Gait patterns of transtibial amputee patients walking indoors barefoot. Am J Phys Med Rehabil 82(2):96–100

    Article  Google Scholar 

  • Isakov E, Keren O, Benjuya N (2000) Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthetics Orthot Int 24(3):216–220

    Article  Google Scholar 

  • Jia X, Zhang M, Lee WC (2004) Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects. J Biomech 37(9):1371–1377

    Article  Google Scholar 

  • Jin Y-a, Plott J, Chen R, Wensman J, Shih A (2015) Additive manufacturing of custom orthoses and prostheses – a review. Procedia CIRP 36:199–204

    Article  Google Scholar 

  • Kahle JT, Highsmith MJ (2014) Transfemoral interfaces with vacuum assisted suspension comparison of gait, balance, and subjective analysis: ischial containment versus brimless. Gait Posture 40(2):315–320

    Article  Google Scholar 

  • Kaufman KR, Frittoli S, Frigo CA (2012) Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin Biomech 27(5):460–465

    Article  Google Scholar 

  • Klute GK, Berge JS, Biggs W, Pongnumkul S, Popovic Z, Curless B (2011) Vacuum-assisted socket suspension compared with pin suspension for lower extremity amputees: effect on fit, activity, and limb volume. Arch Phys Med Rehabil 92(10):1570–1575

    Article  Google Scholar 

  • Kristinsson Ö (1993) The ICEROSS concept: a discussion of a philosophy. Prosthetics Orthot Int 17(1):49–55

    Article  Google Scholar 

  • Laing S, Lee PV, Goh JC (2011) Engineering a trans-tibial prosthetic socket for the lower limb amputee. Ann Acad Med Singap 40(5):252

    Google Scholar 

  • Lemaire ED, Fisher FR (1994) Osteoarthritis and elderly amputee gait. Arch Phys Med Rehabil 75(10):1094–1099

    Article  Google Scholar 

  • Lin C-C, Chang C-H, Wu C-L, Chung K-C, Liao I (2004) Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model. Med Eng Phys 26(1):1–9

    Article  Google Scholar 

  • Ludwigs E, Bellmann M, Schmalz T, Blumentritt S (2010) Biomechanical differences between two exoprosthetic hip joint systems during level walking. Prosthetics Orthot Int 34(4):449–460

    Article  Google Scholar 

  • Lundberg M, Hagberg K, Bullington J (2011) My prosthesis as a part of me: a qualitative analysis of living with an osseointegrated prosthetic limb. Prosthetics Orthot Int 35(2):207–214

    Article  Google Scholar 

  • Madsen MT, Hailer J, Commean PK, Vannier MW (2000) A device for applying static loads to prosthetic limbs of transtibial amputees during spiral CT examination. J Rehabil Res Dev 37(4):383–387

    Google Scholar 

  • Mak AF, Zhang M, Boone DA (2001) State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review. J Rehabil Res Dev 38(2):161–174

    Google Scholar 

  • McNealy LL, Gard SA (2008) Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthetics Orthot Int 32(1):111–126

    Article  Google Scholar 

  • Melzer I, Yekutiel M, Sukenik S (2001) Comparative study of osteoarthritis of the contralateral knee joint of male amputees who do and do not play volleyball. J Rheumatol 28(1):169–172

    Google Scholar 

  • Montero-Odasso M, Schapira M, Varela C, Pitteri C, Soriano ER, Kaplan R, Camera LA, Mayorga L (2004) Gait velocity in senior people an easy test for detecting mobility impairment in community elderly. J Nutr Health Aging 8(5):340–343

    Google Scholar 

  • Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA, Mayorga LM (2005) Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol Ser A Biol Med Sci 60(10):1304–1309

    Article  Google Scholar 

  • Narita H, Yokogushi K, Shi S, Kakizawa M, Nosaka T (1997) Suspension effect and dynamic evaluation of the total surface bearing (TSB) trans-tibial prosthesis: a comparison with the patellar tendon bearing (PTB) trans-tibial prosthesis. Prosthetics Orthot Int 21(3):175–178

    Google Scholar 

  • Nolan L, Lees A (2000) The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthetics Orthot Int 24(2):117–125

    Article  Google Scholar 

  • Ogawa A, Obinata G, Hase K, Dutta A, Nakagawa M (2008) Design of lower limb prosthesis with contact pressure adjustment by MR fluid. In: Engineering in Medicine and Biology Society, EMBS 2008. 30th Annual International Conference of the IEEE. IEEE, pp 330–333.

    Google Scholar 

  • Papaioannou G, Mitrogiannis C, Nianios G, Fiedler G (2010) Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis. J Biomech 43(5):871–878

    Article  Google Scholar 

  • Pinzur M, Asselmeier M, Smith D (1991) Dynamic electromyography in active and limited walking below-knee amputees. Orthopedics 14 (5):535–537; .Discussion 537–538

    Google Scholar 

  • Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Wan Abas WA (2014) Development of an air pneumatic suspension system for transtibial prostheses. Sensors 14(9):16754–16765

    Article  Google Scholar 

  • Polliack A, Sieh R, Craig D, Landsberger S, McNeil D, Ayyappa E (2000) Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthetics Orthot Int 24(1):63–73

    Article  Google Scholar 

  • Powers CM, Rao S, Perry J (1998) Knee kinetics in trans-tibial amputee gait. Gait Posture 8(1):1–7

    Article  Google Scholar 

  • Radcliffe CW, Foort J, Inman VT, Eberhart H (1961) The patellar-tendon-bearing below-knee prosthesis. University of California, Biomechanics Laboratory

    Google Scholar 

  • Rogers B, Bosker G, Faustini M, Walden G, Neptune RR, Crawford R (2008) Case report: variably compliant transtibial prosthetic socket fabricated using solid freeform fabrication. JPO: J Prosthet Orthot 20(1):1–7

    Google Scholar 

  • Rusaw D, Ramstrand N (2010) Sagittal plane position of the functional joint centre of prosthetic foot/ankle mechanisms. Clin Biomech 25 (7):713–720. doi:http://dx.doi.org/10.1016/j.clinbiomech.2010.04.005

    Google Scholar 

  • Russell KA, Palmieri RM, Zinder SM, Ingersoll CD (2006) Sex differences in valgus knee angle during a single-leg drop jump. J Athl Train 41(2):166–171

    Google Scholar 

  • Safari MR, Meier MR (2015) Systematic review of effects of current transtibial prosthetic socket designs – part 2: quantitative outcomes. J Rehabil Res Dev 52(5):509–528

    Article  Google Scholar 

  • Sagawa Y, Turcot K, Armand S, Thevenon A, Vuillerme N, Watelain E (2011) Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 33(4):511–526

    Article  Google Scholar 

  • Sanders JE, Fatone S (2011) Residual limb volume change: systematic review of measurement and management. J Rehabil Res Dev 48(8):949

    Article  Google Scholar 

  • Sanders JE, Bell DM, Okumura RM, Dralle AJ (1998) Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites. IEEE Trans Rehabil Eng 6(1):21–31

    Article  Google Scholar 

  • Sanders J, Jacobsen A, Fergason J (2006a) Effects of fluid insert volume changes on socket pressures and shear stresses: Case studies from two trans-tibial amputee subjects. Prosthetics Orthot Int 30(3):257–269

    Article  Google Scholar 

  • Sanders JE, Karchin A, Fergason JR, Sorenson EA (2006b) A noncontact sensor for measurement of distal residual-limb position during walking. J Rehabil Res Dev 43(4):509

    Article  Google Scholar 

  • Sanders JE, Harrison DS, Allyn KJ, Myers TR, Ciol MA, Tsai EC (2012) How do sock ply changes affect residual-limb fluid volume in people with transtibial amputation? J Rehabil Res Dev 49(2):241–256. doi:10.1682/jrrd.2011.02.0022

    Article  Google Scholar 

  • Sanders JE, Cagle JC, Harrison DS, Myers TR, Allyn KJ (2013) How does adding and removing liquid from socket bladders affect residual limb fluid volume? J Rehabil Res Dev 50(6):845

    Article  Google Scholar 

  • Sanders JE, Hartley TL, Phillips RH, Ciol MA, Hafner BJ, Allyn KJ, Harrison DS (2015) Does temporary socket removal affect residual limb fluid volume of trans-tibial amputees? Prosthetics Orthot Int 0309364614568413

  • Sanderson DJ, Martin PE (1997) Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture 6(2):126–136

    Article  Google Scholar 

  • Sansam K, Neumann V, O’Connor R, Bhakta B (2009) Predicting walking ability following lower limb amputation: a systematic review of the literature. J Rehabil Med 41(8):593–603

    Article  Google Scholar 

  • Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait Posture 16 (3):255-263. doi:http://dx.doi.org/10.1016/S0966-6362(02)00008-5

    Google Scholar 

  • Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 43(7):857–870

    Article  Google Scholar 

  • Sewell P, Noroozi S, Vinney J, Andrews S (2000) Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research. Prosthetics Orthot Int 24(2):97–107

    Article  Google Scholar 

  • Seymour R (2002) Prosthetics and orthotics: lower limb and spinal. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR (2008) Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 28(4):602–609

    Article  Google Scholar 

  • Silver-Thorn MB, Steege JW, Childress DS (1996) A review of prosthetic interface stress investigations. J Rehabil Res Dev 33:253–266

    Google Scholar 

  • Sjödahl C, Jarnlo G-B, Söderberg B, Persson B (2002) Kinematic and kinetic gait analysis in the sagittal plane of trans-femoral amputees before and after special gait re-education. Prosthetics Orthot Int 26(2):101–112

    Article  Google Scholar 

  • Smith DG, Michael JW, Bowker JH, Surgeons AAoO (2004) Atlas of amputations and limb deficiencies: surgical, prosthetic, and rehabilitation principles. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  • Söderberg B, Ryd L, Persson BM (2003) Roentgen stereophotogrammetric analysis of motion between the bone and the socket in a transtibial amputation prosthesis: a case study. JPO: J Prosthet Orthot 15(3):95–99

    Google Scholar 

  • Staats TB, Lundt J (1987) The UCLA total surface bearing suction below-knee prosthesis. Clin Prosthet Orthot 11(3):118–130

    Google Scholar 

  • Su P-F, Gard SA, Lipschutz RD, Kuiken TA (2007) Gait characteristics of persons with bilateral transtibial amputations. J Rehabil Res Dev 44(4):491–501

    Article  Google Scholar 

  • Taheri A, Karimi MT (2012) Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. J Res Med Sci 17(3):258

    Google Scholar 

  • Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J (2012) Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord 13(1):1

    Article  Google Scholar 

  • Thiele J, Westebbe B, Bellmann M, Kraft M (2014) Designs and performance of microprocessor-controlled knee joints. Biomed Te/Biomed Eng 59(1):65–77

    Google Scholar 

  • Torburn L, Powers CM, Guiterrez R, Perry J (1995) Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 32:111–111

    Google Scholar 

  • Traballesi M, Delussu AS, Averna T, Pellegrini R, Paradisi F, Brunelli S (2011) Energy cost of walking in transfemoral amputees: comparison between Marlo Anatomical Socket and Ischial Containment Socket. Gait Posture 34(2):270–274

    Article  Google Scholar 

  • Traballesi M, Delussu A, Fusco A, Iosa M, Averna T, Pellegrini R, Brunelli S (2012) Residual limb wounds or ulcers heal in transtibial amputees using an active suction socket system. A randomized controlled study. Eur J Phys Rehabil Med 48(4):613–623

    Google Scholar 

  • Van de Meent H, Hopman MT, Frölke JP (2013) Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil 94(11):2174–2178

    Article  Google Scholar 

  • Van der Linden M, Solomonidis S, Spence W, Li N, Paul J (1999) A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 32(9):877–889

    Article  Google Scholar 

  • Williams R, Porter D, Roberts V, Regan J (1992) Triaxial force transducer for investigating stresses at the stump/socket interface. Med Biol Eng Comput 30(1):89–96

    Article  Google Scholar 

  • Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367

    Article  Google Scholar 

  • Wirta RW, Golbranson FL, Mason R, Calvo K (1990) Analysis of below-knee suspension systems: effect on gait. J Rehabil Res Dev 27(4):385–396

    Article  Google Scholar 

  • Yigiter K, Sener G, Bayar K (2002) Comparison of the effects of patellar tendon bearing and total surface bearing sockets on prosthetic fitting and rehabilitation. Prosthetics Orthot Int 26(3):206–212

    Article  Google Scholar 

  • Zaffer SM, Braddom RL, Conti A, Goff J, Bokma D (1999) Total hip disarticulation prosthesis with suction socket: report of two cases1. Am J Phys Med Rehabil 78(2):160–162

    Article  Google Scholar 

  • Zhang M, Turner-Smith A, Roberts V, Tanner A (1996) Frictional action at lower limb/prosthetic socket interface. Med Eng Phys 18(3):207–214

    Article  Google Scholar 

  • Zhang M, Turner-Smith A, Tanner A, Roberts V (1998) Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Med Eng Phys 20(3):188–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Eshraghi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Andrysek, J., Eshraghi, A. (2017). Influence of Prosthetic Socket Design and Fitting on Gait. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_76-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_76-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Influence of Prosthetic Socket Design and Fitting on Gait
    Published:
    03 January 2018

    DOI: https://doi.org/10.1007/978-3-319-30808-1_76-3

  2. Influence of Prosthetic Socket Design and Fitting on Gait
    Published:
    22 March 2017

    DOI: https://doi.org/10.1007/978-3-319-30808-1_76-2

  3. Original

    Influence of Prosthetic Socket Design and Fitting on Gait
    Published:
    27 December 2016

    DOI: https://doi.org/10.1007/978-3-319-30808-1_76-1