Skip to main content

The Arm Pendulum in Gait

  • Living reference work entry
  • First Online:
  • 221 Accesses

Abstract

Because of the physical length of the arms and the relatively large range of motion in the shoulder and elbow in gait, any deviation from normal is detected immediately and attracts attention. The deviation can consist of increased flexion in the elbow, decreased range of motion, movement out of phase with the lower extremities, and asymmetry between the movement of right and left arms, either in isolation or in many more or less noticeable combinations. Although human evolution means that we no longer walk on our arms, arm movement has impact on our stability, balance, and appearance while walking. In addition, we can carry things, make gestures, or do other things with the arms and hands while walking. Despite an evolution toward corticospinal control of arm and hand movements, quadrupedal limb coordination persists during locomotion. We do not think about how we coordinate our arms and legs when walking. It just happens.

Individuals with deformity, limited range of motion, or movement disorders affecting the arm show a disturbance of the normal arm pendulum in gait. It can be difficult to understand the consequences of the primary pathology and the influence on the movement pattern as well as the possible development of compensation mechanisms. Studying the arm pendulum is important for diagnosis and treatment and to follow progression over time. In addition, our sensitivity to deviations from normal highlights the importance of arm movement for communication and appearance.

This is a preview of subscription content, log in via an institution.

References

  • Arellano CJ, Kram R (2011) The effects of step width and arm swing on energetic cost and lateral balance during running. J Biomech 44:1291–1295

    Article  Google Scholar 

  • Baker R, Mcginley JL, Schwartz MH, Beynon S, Rozumalski A, Graham HK, Tirosh O (2009) The gait profile score and movement analysis profile. Gait Posture 30:265–269

    Article  Google Scholar 

  • Ballesteros ML, Buchthal F, Rosenfalck P (1965) The pattern of muscular activity during the arm swing of natural walking. Acta Physiol Scand 63:296–310

    Article  Google Scholar 

  • Behrman AL, Teitelbaum P, Cauraugh JH (1998) Verbal instructional sets to normalise the temporal and spatial gait variables in Parkinson’s disease. J Neurol Neurosurg Psychiatry 65:580–582

    Article  Google Scholar 

  • Bonnefoy-Mazure A, Turcot K, Kaelin A, De Coulon G, Armand S (2013) Full body gait analysis may improve diagnostic discrimination between hereditary spastic paraplegia and spastic diplegia: a preliminary study. Res Dev Disabil 34:495–504

    Article  Google Scholar 

  • Bonnefoy-Mazure A, Sagawa Y Jr, Lascombes P, De Coulon G, Armand S (2014) A descriptive analysis of the upper limb patterns during gait in individuals with cerebral palsy. Res Dev Disabil 35:2756–2765

    Article  Google Scholar 

  • Braune W (1895) Der gang des Mencschen I. Abh K Sachs Ges Wiss Math-Phys 21:153

    Google Scholar 

  • Brown WM, Cronk L, Grochow K, Jacobson A, Liu CK, Popovic Z, Trivers R (2005) Dance reveals symmetry especially in young men. Nature 438:1148–1150

    Article  Google Scholar 

  • Brown WM, Price ME, Kang J, Pound N, Zhao Y, Yu H (2008) Fluctuating asymmetry and preferences for sex-typical bodily characteristics. Proc Natl Acad Sci U S A 105:12938–12943

    Article  Google Scholar 

  • Chouchourelou A, Matsuka T, Harber K, Shiffrar M (2006) The visual analysis of emotional actions. Soc Neurosci 1:63–74

    Article  Google Scholar 

  • Collins SH, Adamczyk PG, Kuo AD (2009) Dynamic arm swinging in human walking. Proc Biol Sci 276:3679–3688

    Article  Google Scholar 

  • Corry IS, Cosgrove AP, Walsh EG, Mcclean D, Graham HK (1997) Botulinum toxin A in the hemiplegic upper limb: a double-blind trial. Dev Med Child Neurol 39:185–193

    Article  Google Scholar 

  • Decety J, Grezes J (2006) The power of simulation: imagining one’s own and other’s behavior. Brain Res 1079:4–14

    Article  Google Scholar 

  • Dietz V (2011) Quadrupedal coordination of bipedal gait: implications for movement disorders. J Neurol 258:1406–1412

    Article  Google Scholar 

  • Elftman H (1939) The function of arms in walking. Hum Biol 11:529–535

    Google Scholar 

  • Esquenazi A, Mayer N, Garreta R (2008) Influence of botulinum toxin type A treatment of elbow flexor spasticity on hemiparetic gait. Am J Phys Med Rehabil 87:305–310 quiz 311, 329

    Article  Google Scholar 

  • Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K, Parkinson Study Group (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508

    Article  Google Scholar 

  • Goudriaan M, Jonkers I, Van Dieen JH, Bruijn SM (2014) Arm swing in human walking: what is their drive? Gait Posture 40:321–326

    Article  Google Scholar 

  • Hill H, Pollick FE (2000) Exaggerating temporal differences enhances recognition of individuals from point light displays. Psychol Sci 11:223–228

    Article  Google Scholar 

  • Hirsch MA, Westhoff B, Toole T, Haupenthal S, Krauspe R, Hefter H (2005) Association between botulinum toxin injection into the arm and changes in gait in adults after stroke. Mov Disord 20:1014–1020

    Article  Google Scholar 

  • Ikeda H, Watanabe K (2009) Anger and happiness are linked differently to the explicit detection of biological motion. Perception 38:1002–1011

    Article  Google Scholar 

  • Jackson KM, Joseph J, Wyard SJ (1983) The upper limbs during human walking. Part 2. Function. Electromyogr Clin Neurophysiol 23:435–446

    Google Scholar 

  • Jaspers E, Feys H, Bruyninckx H, Klingels K, Molenaers G, Desloovere K (2011) The Arm Profile Score: a new summary index to assess upper limb movement pathology. Gait Posture 34:227–233

    Article  Google Scholar 

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    Article  Google Scholar 

  • Kubo M, Ulrich B (2006) A biomechanical analysis of the ‘high guard’ position of arms during walking in toddlers. Infant Behav Dev 29:509–517

    Article  Google Scholar 

  • Kuhtz-Buschbeck JP, Jing B (2012) Activity of upper limb muscles during human walking. J Electromyogr Kinesiol 22:199–206

    Article  Google Scholar 

  • Lewek MD, Poole R, Johnson J, Halawa O, Huang X (2010) Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease. Gait Posture 31:256–260

    Article  Google Scholar 

  • Lundh D, Coleman S, Riad J (2014) Movement deviation and asymmetry assessment with three dimensional gait analysis of both upper- and lower extremity results in four different clinical relevant subgroups in unilateral cerebral palsy. Clin Biomech (Bristol, Avon) 29:381–386

    Article  Google Scholar 

  • Meeren HK, Van Heijnsbergen CC, De Gelder B (2005) Rapid perceptual integration of facial expression and emotional body language. Proc Natl Acad Sci U S A 102:16518–16523

    Article  Google Scholar 

  • Meyns P, Desloovere K, Van Gestel L, Massaad F, Smits-Engelsman B, Duysens J (2012a) Altered arm posture in children with cerebral palsy is related to instability during walking. Eur J Paediatr Neurol 16:528–535

    Article  Google Scholar 

  • Meyns P, Van Gestel L, Bruijn SM, Desloovere K, Swinnen SP, Duysens J (2012b) Is interlimb coordination during walking preserved in children with cerebral palsy? Res Dev Disabil 33:1418–1428

    Article  Google Scholar 

  • Meyns P, Bruijn SM, Duysens J (2013) The how and why of arm swing during human walking. Gait Posture 38:555–562

    Article  Google Scholar 

  • Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, Saunders-Pullman R, Raymond D, Doan N, Bressman SB, Marder KS, Alcalay RN, Rao AK, Berg D, Brockmann K, Aasly J, Waro BJ, Tolosa E, Vilas D, Pont-Sunyer C, Orr-Urtreger A, Hausdorff JM, Giladi N (2016) Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov Disord 31(10):1527–1534

    Article  Google Scholar 

  • Montemare JM (1987) The identification of emotions from gait information. J Nonverbal Behavior 11:33–42

    Article  Google Scholar 

  • Murray MP, Sepic SB, Barnard EJ (1967) Patterns of sagittal rotation of the upper limbs in walking. Phys Ther 47:272–284

    Google Scholar 

  • Nakakubo S, Doi T, Sawa R, Misu D, Tsutsumimoto K, Ono R (2014) Does arm swing emphasized deliberately increase the trunk stability during walking in the elderly adults? Gait Posture 40:516–520

    Google Scholar 

  • Ortega JD, Farley CT (2015) Effects of aging on mechanical efficiency and muscle activation during level and uphill walking. J Electromyogr Kinesiol 25:193–198

    Article  Google Scholar 

  • Ortega JD, Fehlman LA, Farley CT (2008) Effects of aging and arm swing on the metabolic cost of stability in human walking. J Biomech 41:3303–3308

    Article  Google Scholar 

  • Perry J (1992) Gait analysis, normal and pathological function. Slack Incorporated, Thorofare

    Google Scholar 

  • Riad J, Coleman S, Miller F (2007) Arm posturing during walking in children with spastic hemiplegic cerebral palsy. J Pediatr Orthop 27:137–141

    Article  Google Scholar 

  • Riad J, Coleman S, Lundh D, Brostrom E (2011) Arm posture score and arm movement during walking: a comprehensive assessment in spastic hemiplegic cerebral palsy. Gait Posture 33:48–53

    Article  Google Scholar 

  • Riad J, Brostrom E, Langius-Eklof A (2013) Do movement deviations influence self-esteem and sense of coherence in mild unilateral cerebral palsy? J Pediatr Orthop 33:298–302

    Article  Google Scholar 

  • Romkes J, Peeters W, Oosterom AM, Molenaar S, Bakels I, Brunner R (2007) Evaluating upper body movements during gait in healthy children and children with diplegic cerebral palsy. J Pediatr Orthop B 16:175–180

    Article  Google Scholar 

  • Russo RN, Goodwin EJ, Miller MD, Haan EA, Connell TM, Crotty M (2008) Self-esteem, self-concept, and quality of life in children with hemiplegic cerebral palsy. J Pediatr 153:473–477

    Article  Google Scholar 

  • Schneider S, Christensen A, Haussinger FB, Fallgatter AJ, Giese MA, Ehlis AC (2014) Show me how you walk and I tell you how you feel – a functional near-infrared spectroscopy study on emotion perception based on human gait. NeuroImage 85(Pt 1):380–390

    Article  Google Scholar 

  • Stephenson JL, De Serres SJ, Lamontagne A (2010) The effect of arm movements on the lower limb during gait after a stroke. Gait Posture 31:109–115

    Article  Google Scholar 

  • Trehan SK, Wolff AL, Gibbons M, Hillstrom HJ, Daluiski A (2015) The effect of simulated elbow contracture on temporal and distance gait parameters. Gait Posture 41:791–794

    Article  Google Scholar 

  • Umberger BR (2008) Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J Biomech 41:2575–2580

    Article  Google Scholar 

  • Uvebrant G (2000) Congenital hemiplegia. Mac Keith Press, London

    Google Scholar 

  • Wake M, Salmon L, Reddihough D (2003) Health status of Australian children with mild to severe cerebral palsy: cross-sectional survey using the Child Health Questionnaire. Dev Med Child Neurol 45:194–199

    Article  Google Scholar 

  • Winogrodzka A, Wagenaar RC, Booij J, Wolters EC (2005) Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait. Arch Phys Med Rehabil 86:183–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaques Riad .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Riad, J. (2016). The Arm Pendulum in Gait. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics