Skip to main content

Interpreting Ground Reaction Forces in Gait

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

This chapter provides a description of ground reaction forces (GRFs) in gait, detailing the technology used to measure them and their use in gait analysis. Representative ground reaction force data is provided, and information on how data is analyzed and interpreted is discussed. In addition, examples of how GRF data has been used to gain an understanding of healthy and pathological gait (scoliosis, cerebral palsy, stroke, multiple sclerosis) are provided and discussed. This chapter highlights that the GRF is an essential part of any clinical gait analysis and contributes to both surgical and conservative clinical management involving gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Gait events as defined by Perry and Burnfield (2010) are included in the following descriptive account to support the interpretation of the three components of the GRF across the stance phase (IC, initial contact; LR, loading response; MS, mid-stance; TS, terminal stance; PS, pre-swing;swing phase).

References

  • Alexander NB, Mollo JM, Giordani B, Ashton-Miller JA, Schultz AB, Grunawalt JA, Foster NL (1995) Maintenance of balance, gait patterns and obstacle clearance in Alzheimer’s disease. Neurology 45(5):908–914

    Article  Google Scholar 

  • Andriacchi TP, Andersson GB, Fermier RW, Stern D, Galante JO (1980) A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am 62(5):749–757

    Article  Google Scholar 

  • Andriacchi TP, Hurwitz DE (1997) Gait biomechanics and the evolution of total joint replacement. Gait Posture 5(3):256–264

    Article  Google Scholar 

  • Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S (1998) Data management in gait analysis for clinical applications. Clin Biomech 13(3):204–215

    Article  Google Scholar 

  • Burwell RG, Dangerfield PH, Lowe TG, Margulies JY (2000) Etiology of adolescent idiopathic scoliosis, State of the art reviews. Hanley & Belfus Inc., Philadelphia

    Google Scholar 

  • Buczek FL, Cavanagh PR (1990) Stance phase knee and ankle kinematics and kinetics during level and downhill running. Med Sci Sports Exerc 22(5):669–677

    Article  Google Scholar 

  • Cavanagh PR, Lafortune MA (1980) Ground reaction forces in distance running. J Biomech 13(5):397–406

    Article  Google Scholar 

  • Chockalingam N, Giakas G, Iossifidou A (2002) Do strain gauge force platforms need in situ correction? Gait Posture 16(3):233–237

    Article  Google Scholar 

  • Chockalingam N, Dangerfield PH, Rahmatalla A, Ahmed E-N, Cochrane T (2004) Assessment of ground reaction force during scoliotic gait. Eur Spine J 13(8):750–754

    Article  Google Scholar 

  • Chockalingam N, BandCi S, Rahmatalla A, Dangerfield PH, Ahmed E-N (2008) Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking. Scoliosis 3:10. doi:10.1186/1748-7161-3-10

    Article  Google Scholar 

  • Davis BL, de Vasconcellos AS, Lundin TM (1997) Uncertainty in 3-D joint moments associated with human gait. In: Proceedings of the XVI congress of the international society of biomechanics. University of Tokyo, Tokyo, p 136

    Google Scholar 

  • Defebvre L, Blatt JL, Blond S, Bourriez JL, Gieu JD, Destee A (1996) Effect of thalamic stimulation on gait in parkinson disease. Arch Neurol 53(9):898–903

    Article  Google Scholar 

  • Dixon PC, Bowtell MV, Stebbins J (2014a) The use of regression and normalisation for the comparison of spatio-temporal gait data in children. Gait Posture 40(4):521–525

    Article  Google Scholar 

  • Dixon PC, Stebbins J, Theologis T, Zavatsky AB (2014b) Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. J Biomech 47(15):3726–3733

    Article  Google Scholar 

  • Dixon PC, Stebbins J, Theologis T, Zavatsky AB (2016) The use of turning tasks in clinical gait analysis for children with cerebral palsy. Clin Biomech 32:286–294

    Article  Google Scholar 

  • Gage JR, Koop SE (1995) Clinical gait analysis: application to management of cerebral palsy. In: Allard P, Stokes IAF, Blanchi JP (eds) Three dimensional analysis of human movement. Human Kinetics. Champaign, IL, pp 349–362

    Google Scholar 

  • Gainey JC, Kadaba MP, Wootten ME, Ramakrishnan HK, Siris ES, Lindsay R, Canfield R, Cochran GV (1989) Gait analysis of patients who have Paget disease. J Bone Joint Surg 71(4):568–579

    Article  Google Scholar 

  • Gehlsen G, Beekman K, Assmann N, Winant D, Seidle M, Carter A (1986) Gait characteristics in multiple sclerosis: progressive changes and effects on parameters. Arch Phys Med Rehabil 67(8):536–539

    Google Scholar 

  • Giakas G, Baltzopoulos V, Dangerfield PH, Dorgan JC, Dalmira S (1996) Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine 21(19):2235–2234

    Article  Google Scholar 

  • Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21:10–114

    Google Scholar 

  • Hesse SA, Jahnke MT, Bertelt CM, Schreiner C, Lücke D, Mauritz KH (1994) Gait outcome in ambulatory hemiparetic patients after a 4-week comprehensive rehabilitation program and prognostic factors. Stroke 25(10):1999–2004

    Article  Google Scholar 

  • Hill SW, Patla AE, Ishac MG, Adkin AL, Supan TJ, Barth DG (1997) Kinematic patterns of participants with a below knee prosthesis stepping over obstacles of various heights during locomotion. Gait Posture 6(3):186–192

    Article  Google Scholar 

  • Hsiao H, Awad LN, Palmer JA, Higginson JS, Binder-Macleod SA (2016) Contribution of paretic and nonparetic limb peak propulsive forces to changes in walking speed in individuals poststroke. Neurorehabil Neural Repair 30(8):743–52

    Google Scholar 

  • Hunt AE, Smith RM, Torode M, Keenan AM (2001) Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech 16(7):592–600

    Article  Google Scholar 

  • Ikeda ER, Schenkman ML, Riley PO, Hodge WA (1991) Influence of age on dynamics of rising from a chair. Phys Ther 71(6):473–481

    Google Scholar 

  • Jacob HA (2001) Forces acting in the forefoot during normal gait – an estimate. Clin Biomech 16(9):783–792

    Article  Google Scholar 

  • Kelleher KJ, Spence WD, Solomonidis S, Apatsidis D (2010) The effect of textured insoles on gait patterns of people with multiple sclerosis. Gait Posture 32(1):67–71

    Article  Google Scholar 

  • Kempen JC, Doorenbosch CA, Knol DL, de Groot V, Beckerman H (2016) Newly identified gait patterns in patient with multiple sclerosis may be related to push-off quality. Phys Ther 96(11):1744–1752

    Article  Google Scholar 

  • Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS (2011a) Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 33(2):314–317

    Article  Google Scholar 

  • Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, Binder-Macleod SA (2011b) Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 33(2):309–313

    Article  Google Scholar 

  • Kim CM, Eng JJ (2003) Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 18(1):23–28

    Article  Google Scholar 

  • Koopman B, Grootenboer HJ, de Jongh HJ (1995) An inverse dynamics model for the analysis reconstruction and prediction of bipedal walking. J Biomech 28(11):1369–1376

    Article  Google Scholar 

  • Koozekanani SH, Balmaseda MT Jr, Fatehi MT, Lowney ED (1987) Ground reaction forces during ambulation in parkinsonism: pilot study. Arch Phys Med Rehabil 68(1):28–30

    Google Scholar 

  • Lulić TJ, Susić A, Kodvanj J (2008) Effects of arm swing on mechanical parameters of human gait. Coll Antropol 32(3):869–873

    Google Scholar 

  • MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644

    Article  Google Scholar 

  • Manal K, McClay I, Richards J, Galinat B, Stanhope S (2002) Knee moment profiles during walking: errors due to soft tissue movement of the shank and the influence of the reference coordinate system. Gait Posture 15(1):10–17

    Article  Google Scholar 

  • McCaw ST, Devita P (1995) Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques. J Biomech 28:985–988

    Article  Google Scholar 

  • Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36(4):599–603

    Article  Google Scholar 

  • Mommersteeg TJ, Huiskes R, Blankevoort L, Kooloos JG, Kauer JM (1997) An inverse dynamics modelling approach to determine the restraining function of human knee ligament bundles. J Biomech 30(2):139–146

    Article  Google Scholar 

  • Nester CJ, van der Linden ML, Bowker P (2003) Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 2:180–187

    Article  Google Scholar 

  • Nilsson J, Thorstensson A (1989) Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand 136(2):217–227

    Article  Google Scholar 

  • Park YS, Lim YT, Koh K, Kim JM, Kwon HJ, Yang JS, Shim JK (2016) Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: investigation of ground reaction force. Clin Biomech 36:52–57

    Article  Google Scholar 

  • Patla AE, Frank JS, Winter DA (1992) Balance control in the elderly: Implications for clinical assessment and rehabilitation. Can J Public Health 83(Suppl 2):S29–S33

    Google Scholar 

  • Patla AE, Frank JS, Winter DA, Rietdyk S, Prentice S, Prasad S (1993) Age-related changes in balance control system: initiation of stepping. Clin Biomech 8(4):179–184

    Article  Google Scholar 

  • Perry J, Burnfield J (2010) Gait analysis: normal and pathological function, 2nd edn. SLACK Inc., Thorofare

    Google Scholar 

  • Razak AHA, Zayegh A, Begg RK, Wahab Y (2012) Foot plantar pressure measurement system: a review. Sensors 12:9884–9912

    Article  Google Scholar 

  • Risher DW, Schutte LM, Runge CF (1997) The use of inverse dynamics solutions in direct dynamics simulations. J Biomech Eng 119(4):417–422

    Article  Google Scholar 

  • Rodgers MM, Mulcare JA, King DL, Mathews T, Gupta SC, Glaser RM (1999) Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J Rehabil Res Dev 36(2):183–188

    Google Scholar 

  • Sanderson DJ, Martin PE (1996) Joint kinetics in unilateral below-knee amputee patients during running. Arch Phys Med Rehabil 77(12):1279–1285

    Article  Google Scholar 

  • Schache AG, Baker R (2007) On expression of joint moments during gait. Gait Posture 25(3):440–452

    Article  Google Scholar 

  • Schizas CG, Kramers-de Quervain IA, Stussi E, Grob D (1998) Gait asymmetries in patients with idiopathic scoliosis using vertical force measurement only. Eur Spine J 7:95–98

    Article  Google Scholar 

  • Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41(8):1639–1650

    Article  Google Scholar 

  • Sharma S, McMorland AJ, Stinear JW (2015) Stance limb ground reaction forces in high functioning stroke and healthy subjects during gait initiation. Clin Biomech 30(7):689–695

    Article  Google Scholar 

  • Stansfield BW, Hillman SJ, Hazlewood ME, Lawson AM, Mann AM, Loudon IR, Robb JE (2003) Normalisation of gait data in children. Gait Posture 17(1):81–87

    Article  Google Scholar 

  • Szczerbik E, Krawczyk M, Syczewska M (2014) Ground reaction force analysed with correlation coefficient matrix in group of stroke patients. Acta Bioeng Biomech 16(2):3–9

    Google Scholar 

  • Stokes IAF (1997) Analysis of symmetry of vertebral body loading consequent of lateral spinal curvature. Spine 22:2495–2503

    Article  Google Scholar 

  • Stokes IAF, Gardner-Morse M (1991) Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis. J Biomech 24:753–759

    Article  Google Scholar 

  • Turns LJ, Neptune RR, Kautz SA (2007) Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil 88(9):1127–1135

    Article  Google Scholar 

  • Vaughan CL, Davis BL, O’Connor J (1992) Gait analysis laboratory. Human Kinetics, Champaign

    Google Scholar 

  • White R, Agouris I, Selbie RD, Kirkpatrick M (1999) The variability of force platform data in normal and cerebral palsy gait. Clin Biomech 14(3):185–192

    Article  Google Scholar 

  • White R, Agouris I, Fletcher E (2005) Harmonic analysis of force platform data in normal and cerebral palsy gait. Clin Biomech 20(5):508–516

    Article  Google Scholar 

  • Whiting WC, Zernicke RF (1998) Biomechanics of musculoskeletal injury. Human Kinet:41–85

    Google Scholar 

  • Williams KR, Cavanagh PR, Ziff JL (1987) Biomechanical studies of elite female distance runners. Int J Sports Med 8(S2):107–118

    Article  Google Scholar 

  • Williams SE, Gibbs S, Meadows CB, Abboud RJ (2011) Classification of the reduced vertical component of the ground reaction force in late stance in cerebral palsy gait. Gait Posture 34(3):370–373

    Article  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York

    Google Scholar 

  • Winter DA, Patla AE, Frank JS, Walt SE (1990) Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70:340–347

    Google Scholar 

  • Wu G, Cavanagh PR (1995) ISB recommendation for standardization in the reporting of kinematic data. J Biomech 28(10):1257–1261

    Article  Google Scholar 

  • Wundeman SR, Huisinga JM, Filipi M, Stergiou N (2011) Multiple sclerosis affects the frequency content in vertical ground reaction forces during walking. Clin Biomech 26(2):207–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachiappan Chockalingam .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Chockalingam, N., Healy, A., Needham, R. (2016). Interpreting Ground Reaction Forces in Gait. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics