Skip to main content

Trunk and Spine Models for Instrumented Gait Analysis

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

There are several types of motion capture systems which can measure trunk and spine movement as a part of gait analysis. These range from wearable sensors to optoelectronic systems. This chapter focuses on models used within optoelectronic systems and covers both two- and three-dimensional models. This chapter while providing an outline of the current thorax and pelvis models highlights novel concepts in terms of 3-dimensional clusters. Latest methods on data analysis techniques using vector coding have been outlined which will facilitate comprehensive reporting of the movement data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armand S, Sangeux M, Baker R (2014) Optimal markers’ placement on the thorax for clinical gait analysis. Gait Posture 39(1):147–153

    Article  Google Scholar 

  • Baker R (2006) Gait analysis methods in rehabilitation. J Neuroeng Rehabil 3(1):4

    Article  Google Scholar 

  • Baker R (2013) Measuring Walking: A Handbook of Clinical Gait Analysis. Mac Keith Press, Cambridge

    Google Scholar 

  • Borhani M, McGregor AH, Bull AMJ (2013) An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set. Gait Posture 38(4):1032–1037

    Article  Google Scholar 

  • Cappello A et al (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. IEEE Trans Biomed Eng 52(6):992–998

    Article  Google Scholar 

  • Cappozzo A (1983) The forces and couples in the human trunk during level walking. J Biomech 16(4):265–277

    Article  Google Scholar 

  • Cappozzo A et al (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10(4):171–178

    Article  Google Scholar 

  • Cappozzo A et al (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174

    Article  Google Scholar 

  • Cappozzo A et al (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21(2):186–196

    Google Scholar 

  • Chockalingam N et al (2003) A comparison of three kinematic systems for assessing spinal range of movement. Int J Ther Rehabil 10(9):402–407

    Article  Google Scholar 

  • Chou R et al (2007) Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med 147(7):478–491

    Article  Google Scholar 

  • Crosbie J, Vachalathiti R, Smith R (1997a) Age, gender and speed effects on spinal kinematics during walking. Gait Posture 5(1):13–20

    Article  Google Scholar 

  • Crosbie J, Vachalathiti R, Smith R (1997b) Patterns of spinal motion during walking. Gait Posture 5(1):6–12

    Article  Google Scholar 

  • Don R et al (2012) Instrumental measures of spinal function: is it worth? A state-of-the art from a clinical perspective. Eur J Phys Rehabil Med 48(2):255–273

    MathSciNet  Google Scholar 

  • Frigo C et al (1998) Functionally oriented and clinically feasible quantitative gait analysis method. Med Biol Eng Comput 36(2):179–185

    Article  Google Scholar 

  • Frigo C et al (2003) The upper body segmental movements during walking by young females. Clin Biomech (Bristol, Avon) 18(5):419–425

    Article  Google Scholar 

  • Hamill J, Palmer C, Van Emmerik REA (2012) Coordinative variability and overuse injury. SMARTT 4(1):45

    Google Scholar 

  • Haneline MT et al (2008) Determining spinal level using the inferior angle of the scapula as a reference landmark: a retrospective analysis of 50 radiographs. J Can Chiropr Assoc 52(1):24–29

    Google Scholar 

  • Hara R et al (2014) Quantification of pelvic soft tissue artifact in multiple static positions. Gait Posture 39(2):712–717

    Article  Google Scholar 

  • Heyrman L, Feys H, Molenaers G, Jaspers E, Van de Walle P, Monari D, Aertbeliën E, Desloovere K (2013) Reliability of head and trunk kinematics during gait in children with spastic diplegia. Gait Posture 37(3):424–429

    Google Scholar 

  • Heyrman L et al (2014) Altered trunk movements during gait in children with spastic diplegia: compensatory or underlying trunk control deficit? Res Dev Disabil 35(9):2044–2052

    Article  Google Scholar 

  • Kisho Fukuchi R et al (2010) Evaluation of alternative technical markers for the pelvic coordinate system. J Biomech 43(3):592–594

    Article  Google Scholar 

  • Leardini A et al (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225

    Article  Google Scholar 

  • Leardini A et al (2011) Multi-segment trunk kinematics during locomotion and elementary exercises. Clin Biomech (Bristol, Avon) 26(6):562–571

    Article  Google Scholar 

  • Lee R (2002) Measurement of movements of the lumbar spine. Physiother Theory Pract 18(4):159–164

    Article  Google Scholar 

  • Levine D, Richards J, Whittle MW (2012) Whittle’s Gait Analysis, fifth ed. Churchill Livingstone, London

    Google Scholar 

  • Lu TW, O’Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32(2):129–134

    Article  Google Scholar 

  • MacWilliams BA et al (2013) Assessment of three-dimensional lumbar spine vertebral motion during gait with use of indwelling bone pins. J Bone Joint Surg (Am Vol) 95(23):e1841–e1848

    Google Scholar 

  • Manal K et al (2000) Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture 11(1):38–45

    Article  Google Scholar 

  • Mason DL et al (2016) Reproducibility of kinematic measures of the thoracic spine, lumbar spine and pelvis during fast running. Gait Posture 43:96–100

    Article  Google Scholar 

  • McClelland JA et al (2010) Alternative modelling procedures for pelvic marker occlusion during motion analysis. Gait Posture 31(4):415–419

    Article  Google Scholar 

  • McGinley JL et al (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369

    Article  Google Scholar 

  • Needham R, Naemi R, Chockalingam N (2014) Quantifying lumbar-pelvis coordination during gait using a modified vector coding technique. J Biomech 47(5):1020–1026

    Article  Google Scholar 

  • Needham RA, Naemi R, Chockalingam N (2015) A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech 48(12):3506–3511

    Article  Google Scholar 

  • Needham R, Naemi R, Healy A, Chockalingam N (2016a) Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait. Prosthet Orthot Int 40(5):624–635

    Google Scholar 

  • Needham R, Stebbins J, Chockalingam N (2016b) Three-dimensional kinematics of the lumbar spine during gait using marker-based systems: a systematic review. J Med Eng Technol 40(4):172–185

    Article  Google Scholar 

  • Nguyen TC, Baker R (2004) Two methods of calculating thorax kinematics in children with myelomeningocele. Clin Biomech 19(10):1060–1065

    Article  Google Scholar 

  • Perry J (1992) Gait Analysis: Normal and Pathological Function. SLACK Incorporated

    Google Scholar 

  • Perry J, Burnfield J (2010) Gait analysis: normal and pathological function, 2nd ed. Thorofare, NJ: SLACK Incorporated

    Google Scholar 

  • Peters A et al (2010) Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review. Gait Posture 31(1):1–8

    Article  MathSciNet  Google Scholar 

  • Rab G, Petuskey K, Bagley A (2002) A method for determination of upper extremity kinematics. Gait Posture 15(2):113–119

    Article  Google Scholar 

  • Richards J (2008) Biomechanics in Clinic and Research. Churchill Livingstone, London

    Google Scholar 

  • Rozumalski A et al (2008) The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28(3):378–384

    Article  Google Scholar 

  • Schache AG et al (2002) Intra-subject repeatability of the three dimensional angular kinematics within the lumbo-pelvic-hip complex during running. Gait Posture 15(2):136–145

    Article  Google Scholar 

  • Seay J, Selbie WS, Hamill J (2008) In vivo lumbo-sacral forces and moments during constant speed running at different stride lengths. J Sports Sci 26(14):1519–1529

    Article  Google Scholar 

  • Seay JF, Van Emmerik REA, Hamill J (2011) Influence of low back pain status on pelvis-trunk coordination during walking and running. Spine 36(16):E1070–E1079

    Article  Google Scholar 

  • Steele J et al (2015) A randomized controlled trial of the effects of isolated lumbar extension exercise on lumbar kinematic pattern variability during gait in chronic low back pain. PM R 8(2):105–114

    Article  Google Scholar 

  • Syczewska M, Oberg T, Karlsson D (1999) Segmental movements of the spine during treadmill walking with normal speed. Clin Biomech (Bristol, Avon) 14(6):384–388

    Article  Google Scholar 

  • Taylor NF, Evans OM, Goldie PA (1996) Angular movements of the lumbar spine and pelvis can be reliably measured after 4 minutes of treadmill walking. Clin Biomech (Bristol, Avon) 11(8):484–486

    Article  Google Scholar 

  • Thorstensson A et al (1984) Trunk movements in human locomotion. Acta Physiol Scand 121(1):9–22

    Article  Google Scholar 

  • Thurston AJ (1982) Repeatability studies of a television/computer system for measuring spinal and pelvic movements. J Biomed Eng 4(2):129–132

    Article  Google Scholar 

  • Van Emmerik REA et al (2005) Age-related changes in upper body adaptation to walking speed in human locomotion. Gait Posture 22(3):233–239

    Article  Google Scholar 

  • Vogt L et al (2001) Influences of nonspecific low back pain on three-dimensional lumbar spine kinematics in locomotion. Spine 26(17):1910–1919

    Article  Google Scholar 

  • Wu G et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. J Biomech 35(4):543–548

    Article  Google Scholar 

  • Wu G et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Needham .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Needham, R., Healy, A., Chockalingam, N. (2016). Trunk and Spine Models for Instrumented Gait Analysis. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics