Skip to main content

3D Musculoskeletal Kinematics Using Dynamic MRI

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Until the early 1990s, the tools available to measure musculoskeletal motion were typically highly invasive. Thus, knowledge of musculoskeletal system dynamics was primarily derived through cadaver and modeling experiments. The rapid development of dynamic magnetic resonance (MR) imaging techniques changed this and opened vast new opportunities for the study of 3D musculoskeletal dynamics during volitional activities. Today, dynamic MR methodologies remain the only techniques that can noninvasively track in vivo 3D musculoskeletal movement.

One difficulty in applying these dynamic MR techniques to the study of musculoskeletal motion is the complex interplay of parameters that affect the spatial/temporal resolution, accuracy, and precision. The purpose of this chapter is to first provide an explanation of the fundamental principles behind two of these dynamic imaging techniques, cine and cine phase-contrast MR. Tagged cine MR is another technique that has been primarily used to track muscle motion and strain but will not be addressed. In doing so, this will create a platform for future experimental designs using dynamic MR. This will be followed by a review of the accuracies, the advantages, and disadvantages of the these dynamic MR methods. Finally, several previously published studies will be highlighted to provide an explanation of how these techniques can be applied and what main challenges must be considered for future experiments using dynamic MR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asakawa DS, Blemker SS, Gold GE, Delp SL (2002) In vivo motion of the rectus femoris muscle after tendon transfer surgery. J Biomech 35(8):1029–1037

    Article  Google Scholar 

  • Behnam AJ, Herzka DA, Sheehan FT (2011) Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. J Biomech 44(1):193–197. doi:10.1016/j.jbiomech.2010.08.029

    Article  Google Scholar 

  • Bey MJ, Kline SK, Tashman S, Zauel R (2008) Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion. J Orthop Surg Res 3:38. doi:10.1186/1749-799x-3-38

    Article  Google Scholar 

  • Borotikar BS, Sipprell WH 3rd, Wible EE, Sheehan FT (2012) A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. J Biomech 45(6):1117–1122

    Article  Google Scholar 

  • Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M (1993) Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology 187(1):205–212. doi:10.1148/radiology.187.1.8451415

    Article  Google Scholar 

  • Burnett KR, Davis CL, Read J (1987) Dynamic display of the temporomandibular joint meniscus by using “fast-scan” MR imaging. AJR Am J Roentgenol 149(5):959–962. doi:10.2214/ajr.149.5.959

    Article  Google Scholar 

  • Cadera W, Viirre E, Karlik S (1992) Cine magnetic resonance imaging of ocular motility. J Pediatr Ophthalmol Strabismus 29(2):120–122

    Google Scholar 

  • Carlson VR, Boden BP, Sheehan FT (2016) Patellofemoral kinematics and tibial tuberosity-trochlear groove distances in female adolescents with patellofemoral pain. Am J Sports Med. doi:10.1177/0363546516679139

    Google Scholar 

  • Cheng S, Butler JE, Gandevia SC, Bilston LE (2008) Movement of the tongue during normal breathing in awake healthy humans. J Physiol 586(17):4283–4294. doi:10.1113/jphysiol.2008.156430

    Article  Google Scholar 

  • Drace JE, Pelc NJ (1994) Skeletal muscle contraction: analysis with use of velocity distributions from phase-contrast MR imaging. Radiology 193(2):423–429. doi:10.1148/radiology.193.2.7972757

    Article  Google Scholar 

  • Edsfeldt S, Rempel D, Kursa K, Diao E, Lattanza L (2015) In vivo flexor tendon forces generated during different rehabilitation exercises. J Hand Surg Eur Vol 40(7):705–710. doi:10.1177/1753193415591491

    Article  Google Scholar 

  • Feinberg DA, Crooks L, Hoenninger J 3rd, Arakawa M, Watts J (1984) Pulsatile blood velocity in human arteries displayed by magnetic resonance imaging. Radiology 153(1):177–180. doi:10.1148/radiology.153.1.6473779

    Article  Google Scholar 

  • Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S (2006) Muscle synergism during isometric plantarflexion in achilles tendon rupture patients and in normal subjects revealed by velocity-encoded cine phase-contrast MRI. Clin Biomech (Bristol, Avon) 21(1):67–74. doi:10.1016/j.clinbiomech.2005.08.007

    Article  Google Scholar 

  • Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195(2):471–478. doi:10.1148/radiology.195.2.7724769

    Article  Google Scholar 

  • Fregly BJ, Rahman HA, Banks SA (2005) Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng 127(4):692–699

    Article  Google Scholar 

  • Fujiwara T, Togashi K, Yamaoka T, Nakai A, Kido A, Nishio S, Yamamoto T, Kitagaki H, Fujii S (2004) Kinematics of the uterus: cine mode MR imaging. Radiogr Rev Publ Radiol Soc N Am Inc 24(1):e19. doi:10.1148/rg.e19

    Google Scholar 

  • Glover GH, Pelc NJ (1988) A rapid-gated cine MRI technique. In: Magnetic resonance annual. Raven Press, New York, NY, pp 299–333

    Google Scholar 

  • Im HS, Goltzer O, Sheehan FT (2015) The effective quadriceps and patellar tendon moment arms relative to the tibiofemoral finite helical axis. J Biomech 48(14):3737–3742. doi:10.1016/j.jbiomech.2015.04.003

    Article  Google Scholar 

  • Jensen ER, Morrow DA, Felmlee JP, Odegard GM, Kaufman KR (2015) Error analysis of cine phase contrast MRI velocity measurements used for strain calculation. J Biomech 48(1):95–103. doi:10.1016/j.jbiomech.2014.10.035

    Article  Google Scholar 

  • Jensen ER, Morrow DA, Felmlee JP, Murthy NS, Kaufman KR (2016) Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using cine phase contrast MRI. J Biomech 49(14):3430–3436. doi:10.1016/j.jbiomech.2016.09.002

    Article  Google Scholar 

  • Kaiser J, Bradford R, Johnson K, Wieben O, Thelen DG (2013) Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling. Magn Reson Med 69(5):1310–1316. doi:10.1002/mrm.24362

    Article  Google Scholar 

  • Kaiser J, Monawer A, Chaudhary R, Johnson KM, Wieben O, Kijowski R, Thelen DG (2016) Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI. Med Eng Phys 38(10):1131–1135. doi:10.1016/j.medengphy.2016.06.016

    Article  Google Scholar 

  • Keegan J, Firmin D, Gatehouse P, Longmore D (1994) The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 31(5):526–536

    Article  Google Scholar 

  • Kinugasa R, Shin D, Yamauchi J, Mishra C, Hodgson JA, Edgerton VR, Sinha S (2008) Phase-contrast MRI reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction. J Appl Physiol (Bethesda, MD: 1985) 105(4):1312–1320. doi:10.1152/japplphysiol.90440.2008

    Article  Google Scholar 

  • Lafortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A (1994) Foot inversion-eversion and knee kinematics during walking. J Orthop Res 12(3):412–420. doi:10.1002/jor.1100120314

    Article  Google Scholar 

  • Langner I, Fischer S, Eisenschenk A, Langner S (2015) Cine MRI: a new approach to the diagnosis of scapholunate dissociation. Skelet Radiol 44(8):1103–1110. doi:10.1007/s00256-015-2126-4

    Article  Google Scholar 

  • Manal K, McClay I, Stanhope S, Richards J, Galinat B (2000) Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture 11(1):38–45

    Article  Google Scholar 

  • Markl M, Alley MT, Pelc NJ (2003) Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. Magn Reson Med 49(5):945–952. doi:10.1002/mrm.10451

    Article  Google Scholar 

  • Melchert UH, Schroder C, Brossmann J, Muhle C (1992) Motion-triggered cine MR imaging of active joint movement. Magn Reson Imaging 10(3):457–460

    Article  Google Scholar 

  • Moerman KM, Sprengers AM, Simms CK, Lamerichs RM, Stoker J, Nederveen AJ (2012) Validation of continuously tagged MRI for the measurement of dynamic 3D skeletal muscle tissue deformation. Med Phys 39(4):1793–1810. doi:10.1118/1.3685579

    Article  Google Scholar 

  • Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25(7):867–872. doi:10.1002/jor.20355

    Article  Google Scholar 

  • Pappas GP, Asakawa DS, Delp SL, Zajac FE, Drace JE (2002) Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol (Bethesda, MD: 1985) 92(6):2381–2389. doi:10.1152/japplphysiol.00843.2001

    Article  Google Scholar 

  • Pelc NJ (1995) Flow quantification and analysis methods. Magn Reson Imaging Clin N Am 3(3):413–424

    Google Scholar 

  • Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991a) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging: JMRI 1(4):405–413

    Article  Google Scholar 

  • Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991b) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254

    Google Scholar 

  • Pelc NJ, Sommer FG, Li KC, Brosnan TJ, Herfkens RJ, Enzmann DR (1994) Quantitative magnetic resonance flow imaging. Magn Reson Q 10(3):125–147

    Google Scholar 

  • Pelc NJ, Drangova M, Pelc LR, Zhu Y, Noll DC, Bowman BS, Herfkens RJ (1995) Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging: JMRI 5(3):339–345

    Article  Google Scholar 

  • Pike GB, Meyer CH, Brosnan TJ, Pelc NJ (1994) Magnetic resonance velocity imaging using a fast spiral phase contrast sequence. Magn Reson Med 32(4):476–483

    Article  Google Scholar 

  • Regev GJ, Kim CW, Tomiya A, Lee YP, Ghofrani H, Garfin SR, Lieber RL, Ward SR (2011) Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine 36(26):E1666–E1674. doi:10.1097/BRS.0b013e31821847b3

    Article  Google Scholar 

  • Riederer SJ (1993) Spatial encoding and image reconstruction. In: Bronskill MJ, Sprawls P (eds) The physics of MRI: 1992 AAP< summer school proceedings. American Instiutes of Physics, Woodbury, pp 135–165

    Google Scholar 

  • Sheehan FT (2012) The 3D in vivo Achilles’ tendon moment arm, quantified during active muscle control and compared across sexes. J Biomech 45(2):225–230. doi:10.1016/j.jbiomech.2011.11.001

    Article  Google Scholar 

  • Sheehan FT, Drace JE (2000) Human patellar tendon strain. A noninvasive, in vivo study. Clin Orthop Relat Res 370:201–207

    Article  Google Scholar 

  • Sheehan FT, Zajac FE, Drace JE (1998) Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. J Biomech 31(1):21–26

    Article  Google Scholar 

  • Sheehan FT, Borotikar BS, Behnam AJ, Alter KE (2012) Alterations in in vivo knee joint kinematics following a femoral nerve branch block of the vastus medialis: implications for patellofemoral pain syndrome. Clin Biomech (Bristol, Avon) 27(6):525–531. doi:10.1016/j.clinbiomech.2011.12.012

    Article  Google Scholar 

  • Shibanuma N, Sheehan FT, Lipsky PE, Stanhope SJ (2004) Sensitivity of femoral orientation estimates to condylar surface and MR image plane location. J Magn Reson Imaging: JMRI 20(2):300–305. doi:10.1002/jmri.20106

    Article  Google Scholar 

  • Shibanuma N, Sheehan FT, Stanhope SJ (2005) Limb positioning is critical for defining patellofemoral alignment and femoral shape. Clin Orthop Relat Res 434:198–206

    Article  Google Scholar 

  • Shih YF, Bull AM, McGregor AH, Humphries K, Amis AA (2003) A technique for the measurement of patellar tracking during weight-bearing activities using ultrasound. Proc Inst Mech Eng H J Eng Med 217(6):449–457

    Article  Google Scholar 

  • Silder A, Reeder SB, Thelen DG (2010) The influence of prior hamstring injury on lengthening muscle tissue mechanics. J Biomech 43(12):2254–2260. doi:10.1016/j.jbiomech.2010.02.038

    Article  Google Scholar 

  • Sinha S, Shin DD, Hodgson JA, Kinugasa R, Edgerton VR (2012) Computer-controlled, MR-compatible foot-pedal device to study dynamics of the muscle tendon complex under isometric, concentric, and eccentric contractions. J Magn Reson Imaging: JMRI 36(2):498–504. doi:10.1002/jmri.23617

    Article  Google Scholar 

  • Stone M, Davis EP, Douglas AS, NessAiver M, Gullapalli R, Levine WS, Lundberg A (2001) Modeling the motion of the internal tongue from tagged cine-MRI images. J Acoust Soc Am 109(6):2974–2982

    Article  Google Scholar 

  • Thompson RB, McVeigh ER (2004) Flow-gated phase-contrast MRI using radial acquisitions. Magn Reson Med 52(3):598–604. doi:10.1002/mrm.20187

    Article  Google Scholar 

  • Thunberg P, Karlsson M, Wigstrom L (2003) Accuracy and reproducibility in phase contrast imaging using SENSE. Magn Reson Med 50(5):1061–1068. doi:10.1002/mrm.10634

    Article  Google Scholar 

  • van Kampen A, Huiskes R (1990) The three-dimensional tracking pattern of the human patella. J Orthop Res 8(3):372–382. doi:10.1002/jor.1100080309

    Article  Google Scholar 

  • Verbruggen SW, Loo JH, Hayat TT, Hajnal JV, Rutherford MA, Phillips AT, Nowlan NC (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15(4):995–1004. doi:10.1007/s10237-015-0738-1

    Article  Google Scholar 

  • Waterton JC, Jenkins JP, Zhu XP, Love HG, Isherwood I, Rowlands DJ (1985) Magnetic resonance (MR) cine imaging of the human heart. Br J Radiol 58(692):711–716. doi:10.1259/0007-1285-58-692-711

    Article  Google Scholar 

  • Wedeen VJ, Rosen BR, Chesler D, Brady TJ (1985) MR velocity imaging by phase display. J Comput Assist Tomogr 9(3):530–536

    Article  Google Scholar 

  • Wen H, Dou Z, Finni T, Havu M, Kang Z, Cheng S, Sipila S, Sinha S, Usenius JP, Cheng S (2008) Thigh muscle function in stroke patients revealed by velocity-encoded cine phase-contrast magnetic resonance imaging. Muscle Nerve 37(6):736–744. doi:10.1002/mus.20986

    Article  Google Scholar 

  • Westphal CJ, Schmitz A, Reeder SB, Thelen DG (2013) Load-dependent variations in knee kinematics measured with dynamic MRI. J Biomech 46(12):2045–2052. doi:10.1016/j.jbiomech.2013.05.027

    Article  Google Scholar 

  • Wilson NA, Sheehan FT (2009) Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components. J Biomech 42(12):1891–1897. doi:10.1016/j.jbiomech.2009.05.011

    Article  Google Scholar 

  • Wilson NA, Sheehan FT (2010) Dynamic in vivo quadriceps lines-of-action. J Biomech 43(11):2106–2113. doi:10.1016/j.jbiomech.2010.04.002

    Article  Google Scholar 

  • Wood M, Wiang Q (1993) Motion artifacts and remedies. In: Bronskill MJ, Sprawls P (eds) The physics of MRI: 1992 AAP< summer school proceedings. American Instiutes of Physics, Woodbury, pp 383–411

    Google Scholar 

  • Yamashita S, Isoda H, Hirano M, Takeda H, Inagawa S, Takehara Y, Alley MT, Markl M, Pelc NJ, Sakahara H (2007) Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging: JMRI 25(3):473–478. doi:10.1002/jmri.20828

    Article  Google Scholar 

  • Zhou H, Novotny JE (2007) Cine phase contrast MRI to measure continuum Lagrangian finite strain fields in contracting skeletal muscle. J Magn Reson Imaging: JMRI 25(1):175–184. doi:10.1002/jmri.20783

    Article  Google Scholar 

  • Zhu Y, Drangova M, Pelc NJ (1996) Fourier tracking of myocardial motion using cine-PC data. Magn Reson Med 35(4):471–480

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Intramural Research Program of the National Institutes of Health Clinical Center, Bethesda, MD, USA. This research was also made possible through the NIH Medical Research Scholars Program, a public-private partnership (http://fnih.org). We thank Judith Welsh for her help and support in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances T. Sheehan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Sheehan, F.T., Smith, R.M. (2017). 3D Musculoskeletal Kinematics Using Dynamic MRI. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_155-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_155-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics