Skip to main content

Endocrinology of the Fetal Testis

  • Living reference work entry
  • First Online:
  • 182 Accesses

Part of the book series: Endocrinology ((ENDOCR))

Abstract

The human fetus, already at a very early stage in its development, is hormonally active, with the testis and adrenal gland being major contributors. Following sex determination at around weeks 5–6, the somatic cells of the testis begin to differentiate into hormone-producing Sertoli and Leydig cells. The latter cells share similar origins to the steroidogenic cells of the adrenal cortex and fetal zones which at this stage of human development are located close to the testis. This changes following testis descent to the inguinal region caused by Leydig cell production of androgens and INSL3. In the first half of pregnancy, fetal hormones act more as paracrine systems diffusing locally within the fetus and amniotic fluid; consequently understanding fetal steroidogenesis at this stage requires knowledge of both testis and adrenal metabolism. Much of fetal testis development is governed and orchestrated by feedforward and feedback processes, combining with irreversible effects, such as the involution of the Mullerian ducts, the development of the Wolffian system, and testis descent. These processes and the timing of hormone and receptor expression are what lead to the high precision that results in the extremely low frequency of nongenetic disorders of sex development. This is now being challenged by in utero low-level exposure to a range of anthropogenic chemicals which appear capable of disrupting normal development.

This is a preview of subscription content, log in via an institution.

References

  • Anand-Ivell R, Ivell R. Insulin-like factor 3 as a monitor of endocrine disruption. Reproduction. 2014;147:R87–95.

    CAS  PubMed  Google Scholar 

  • Anand-Ivell R, Ivell R, Driscoll DA, Manson J. INSL3 Levels in amniotic fluid from human male fetuses. Hum Reprod. 2008;23:1180–6.

    Article  CAS  PubMed  Google Scholar 

  • Anand-Ivell R, Hiendleder S, Viñoles C, Martin GB, Fitzsimmons C, Eurich A, Hafen B, Ivell R. INSL3 in the ruminant: a powerful indicator of gender- and genetic-specific feto-maternal dialogue. PLoS One. 2011;6:e19821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archambeault DR, Yao HH. Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci USA. 2010;107:10526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auchus RJ, Miller WL. Congenital adrenal hyperplasia – more dogma bites the dust. J Clin Endocrinol Metab. 2012;97:772–5.

    Article  CAS  PubMed  Google Scholar 

  • Baker TG, Scrimgeour JB. Development of the gonad in normal and anencephalic human fetuses. J Reprod Fertil. 1980;60:193–9.

    Article  CAS  PubMed  Google Scholar 

  • Balvers M, Spiess AN, Domagalski R, Hunt N, Kilic E, Mukhopadhyay AK, Hanks E, Charlton HM, Ivell R. Relaxin like factor (RLF) expression as a marker of differentiation in the mouse testis and ovary. Endocrinology. 1998;139:2960–70.

    Article  CAS  PubMed  Google Scholar 

  • Bao AM, Swaab DF. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol. 2011;32:214–26.

    Article  PubMed  Google Scholar 

  • Basciani S, Mariani S, Arizzi M, Ulisse S, Rucci N, Jannini EA, Della Rocca C, Manicone A, Carani C, Spera G, Gnessi L. Expression of platelet-derived growth factor-A (PDGF-A), PDGF-B and PDGF receptor- alpha and –beta during human testicular development and disease. J Clin Endocrinol Metab. 2002;87:2310–9.

    CAS  PubMed  Google Scholar 

  • Basciani S, Mariani S, Spera G, Gnessi L. Role of platelet-derived growth factors in the testis. Endocr Rev. 2010;31:916–39.

    Article  CAS  PubMed  Google Scholar 

  • Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, Andersson AM, The Nordic Cryptorchidism Study Group, Toppari J. Insulin-like Factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92:4020–7.

    Article  CAS  PubMed  Google Scholar 

  • Bellingham M, McKinnell C, Fowler PA, Amezega MR, Zhang Z, Rhind SM, Cotinot C, Mandon-Pepin B, Evans NP, Sharpe RM. Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. Int J Androl. 2012;35:317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biason-Lauber A, Miller WL, Pandey AV, Flück CE. Of marsupials and men: “Backdoor” dihydrotestosterone synthesis in male sexual differentiation. Mol Cell Endocrinol. 2013;371:124–32.

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Tilmann C, Capel B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development inb the XY gonad. Genes Dev. 2003;17:800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks AN, McNeilly A, Thomas GB. Role of GnRH in the ontogeny and regulation of the fetal hypothalamo-pituitary-gonadal axis in sheep. J Reprod Fertil Suppl. 1995;49:163–75.

    CAS  PubMed  Google Scholar 

  • Carney CM, Muszynski JL, Strotman LN, Lewis SR, O’Connell RL, Beebe DJ, Theberge AB, Jorgensen JS. Cellular microenvironment dictates androgen production by murine fetal Leydig cells in primary culture. Biol Reprod. 2014;91:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carson D, Okuno A, Lee PA, Stetten G, Didolkar SM, Migeon C. Amniotic fluid steroid levels. Am J Dis Child. 1982;136:218–22.

    Article  CAS  PubMed  Google Scholar 

  • Cederroth CR, Schaad O, Descombes P, Chambon P, Vassalli JD, Nef S. Estrogen receptor alpha is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology. 2007;148:5507–19.

    Article  CAS  PubMed  Google Scholar 

  • Cool J, DeFalco TJ, Capel B. Vascular-mesenchymal cross-talk through Vegf and Pdgf drives organ patterning. Proc Natl Acad Sci U S A. 2011;108:167–72.

    Article  CAS  PubMed  Google Scholar 

  • Delbès G, Levacher C, Duquenne C, Racine C, Pakarinen P, Habert R. Endogenous estrogens inhibit mouse fetal Leydig cell development via estrogen receptor alpha. Endocrinology. 2005;146:2454–61.

    Article  PubMed  CAS  Google Scholar 

  • Diczfalusy E. Endocrine functions of the human fetoplacental unit. Fed Proc. 1964;23:791–8.

    CAS  PubMed  Google Scholar 

  • El-Gehani F, Tena-Sempere M, Huhtaniemi I. Evidence that pituitary adenylate cyclase–activating polypeptide is a potent regulator of fetal rat testicular ste4roidogenesis. Biol Reprod. 2000;63:1482–9.

    Article  CAS  PubMed  Google Scholar 

  • El-Gehani F, Tena-Sempere M, Ruskoaho H, Huhtaniemi I. Matriuretic peptides stimulate steroidogenesis in the fetal rat testis. Biol Reprod. 2001;65:595–600.

    Article  CAS  PubMed  Google Scholar 

  • Emmen JM, McLuskey A, Adham IM, Engel W, Grootegoed JA, Brinkmann AO. Hormonal control of gubernaculum development during testis descent: gubernaculum outgrowth in vitro requires both insulin-like factor and androgen. Endocrinology. 2000;141:4720–7.

    Article  CAS  Google Scholar 

  • Fahrenkrug J. PACAP – a multifacetted neuropeptide. Chronobiol Int. 2006;23:53–61.

    Article  CAS  PubMed  Google Scholar 

  • Fénichel P, Lahlou N, Coquillard P, Panaïa-Ferrari P, Wagner-Mahler K, Brucker-Davis F. Cord blood insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin Endocrinol. 2015;82:242–7.

    Article  CAS  Google Scholar 

  • Ferlin A, Zuccarello D, Garolla A, Selice R, Vinanzi C, Ganz F, Zanon GF, Zuccarello B, Foresta C. Mutations in INSL3 and RXFP2 genes in cryptorchid boys. Ann N Y Acad Sci. 2009;1160:213–4.

    Article  CAS  PubMed  Google Scholar 

  • Flück CE, Pandey AV. Steroidogenesis of the testis – new genes and pathways. Ann Endocrinol (Paris). 2014;75:40–7.

    Article  Google Scholar 

  • Forest MG, De Peretti E, Lecoq A, Cadillon E, Zabot MT, Thoulon JM. Concentration of 14 steroid hormones in human amniotic fluid of midpregnancy. J Clin Endocrinol Metab. 1980;51:816–22.

    Article  CAS  PubMed  Google Scholar 

  • Fowler PA, Cassie S, Rhind SM, Brewer MJ, Collinson JM, Lea RG, Baker PJ, Bhattacharya S, O’Shaughnessy PJ. Maternal smoking during pregnancy specifically reduces human fetal desert hedgehog gene expression during testis development. J Clin Endocrinol Metab. 2008;93:619–26.

    Article  CAS  PubMed  Google Scholar 

  • Fukami M, Homma K, Hasegawa T, Ogata T. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development. Dev Dyn. 2013;242:320–9.

    Article  CAS  PubMed  Google Scholar 

  • Gaskell TL, Robinson LL, Groome NP, Anderson RA, Saunders PT. Differential expression of two estrogen receptor beta isoforms in the human fetal testis during the second trimester of pregnancy. J Clin Endocrinol Metab. 2003;88:424–32.

    Article  CAS  PubMed  Google Scholar 

  • Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Piper Hanley K, Marcos J, Wood PJ, Wright S, Postle AD, Cameron IT, Mason JI, Wilson DI, Hanley NA. In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. J Clin Invest. 2006;116:953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habert R, Livera G, Rouiller-Fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl. 2014;24:14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallmark N, Walker M, McKinnell C, Mahood IK, Scott H, Bayne R, Coutts S, Anderson RA, Greig I, Morris K, Sharpe RM. Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect. 2007;115:390–6.

    Article  CAS  PubMed  Google Scholar 

  • Hanley NA, Arlt W. The human fetal adrenal cortex and the window of sexual differentiation. Trends Endocrinol Metab. 2006;17:391–7.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Fuzukawa Y, Rodriguez-Vazquez JF, Cho BH, Verdugo-Lopez S, Murukami G, Nakano T. Pleuroperitoneal canal closure and the fetal adrenal gland. Anat Rec. 2011;294:633–44.

    Article  Google Scholar 

  • Ishimoto H, Jaffe RB. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev. 2011;32:317–55.

    Article  CAS  PubMed  Google Scholar 

  • Ivell R, Anand-Ivell R. The biology of Insulin-like Factor 3 (INSL3) in human reproduction. Hum Reprod Update. 2009;15:463–76.

    Article  CAS  PubMed  Google Scholar 

  • Ivell R, Hunt N, Hardy M, Nicholson H, Pickering B. Vasopressin biosynthesis in rodent Leydig cells. Mol Cell Endocrinol. 1992;89:59–66.

    Article  CAS  PubMed  Google Scholar 

  • Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet. 2002;32:408–10.

    Article  CAS  PubMed  Google Scholar 

  • Jarred RA, Cancilla B, Richards M, Groome NP, McNatty KP, Risbridger GP. Differential localization of inhibin subunit proteins in the ovine testis during fetal gonadal development. Endocrinology. 1999;140:979–86.

    Article  CAS  PubMed  Google Scholar 

  • Jensen MS, Anand-Ivell R, Nørgaard-Pedersen B, BAG J, Bonde JP, Hougaard DM, Cohen A, Lindh CH, Ivell R, Thulstrup AM, Toft G. Second trimester amniotic fluid DEHP and DiNP metabolite levels: associations with fetal Leydig cell function, cryptorchidism and hypospadias. Epidemiology. 2015;26:91–9.

    Article  PubMed  Google Scholar 

  • Jordan BK, Mohammed M, Ching ST, Delot E, Chen XN, Dewing P, Swain A, Rai PN, Elejalde BR, Vilain E. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet. 2001;68:1102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josso N, Lamarre I, Picard JY, Berta P, Davies N, Morichon N, Peschanski M, Jeny R. Anti-müllerian hormone in early human development. Early Hum Dev. 1993;33:91–9.

    Article  CAS  PubMed  Google Scholar 

  • Josso N, Belville C, di Clemente N, Picard JY. AMH and AMH receptor defects in persistent Müllerian duct syndrome. Hum Reprod Update. 2005;11:351–6.

    Article  CAS  PubMed  Google Scholar 

  • Kamrath C, Hochberg Z, Hartmann MF, Remer T, Wudy SA. Increased activation of the alternative “backdoor” pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis. J Clin Endocrinol Metab. 2012;97:E367–75.

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Capel B. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn. 2006;235:2292–300.

    Article  CAS  PubMed  Google Scholar 

  • Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol. 2004;270:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Temelcos C, Bathgate RA, Smith KJ, Scott D, Zhao C, Hutson JM. The role of insulin 3, testosterone, Müllerian inhibiting substance and relaxin in rat gubernacular growth. Mol Hum Reprod. 2002;8:900–5.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M. Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol. 2004;99:76–82.

    Article  CAS  PubMed  Google Scholar 

  • Lassurguère J, Livera G, Habert R, Jégou B. Time- and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture. Toxicol Sci. 2003;73:160–9.

    Article  PubMed  Google Scholar 

  • Lee SM, Hutson JM. Effect of androgens on the cranial suspensory ligament and ovarian position. Anat Rec. 1999;255:306–15.

    Article  CAS  PubMed  Google Scholar 

  • Lykkesfeldt G, Bennett P, Lykkesfeldt AE, Micic S, Rorth M, Skakkebaek NE, Svenstrup B. Testis cancer. Ichthyosis constitutes a significant risk factor. Cancer. 1991;67:730–4.

    Article  CAS  PubMed  Google Scholar 

  • Majdic G, McNeilly AS, Sharpe RM, Evans LR, Groome NP, Saunders PT. Testicular expression of inhibin and activing subunits and follistatin in the rat and human fetus and neonate and during postnatal development in the rat. Endocrinology. 1997;138:2136–47.

    Article  CAS  PubMed  Google Scholar 

  • Mamsen LS, Petersen TS, Jeppesen JV, Mollgard K, Grondahl ML, Larsen A, Ernst E, Oxvig C, Kumar A, Kalra B, Andersen CY. Proteolytic processing of anti-Mullerian hormone differs between human fetal testes and adult ovaries. Mol Hum Reprod. 2015;21:571–82.

    Article  CAS  PubMed  Google Scholar 

  • Marsee K, Woodruff TJ, Axelrad DA, Calafat AM, Swan SH. Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environ Health Perspect. 2006;114:805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazaud-Guittot S, Nicolas Nicolaz C, Desdoits-Lethimonier C, Coiffec I, Ben Maamar M, Balaqguer P, Kristensen DM, Chevrier C, Lavoue V, Poulain P, Dejucq-Rainsford N, Jegou B. Paracetamol, aspirin, and indomethacin induce endocrine disturbances in the human fetal testis capable of interfering with testicular descent. J Clin Endocrinol Metab. 2013;98:1757–67.

    Article  CAS  Google Scholar 

  • McDowell EN, Kisielewski AE, Pike JW, Franco HL, Yao HH, Johnson KJ. A transcriptome-wide screen for mRNAs enriched in fetal Leydig cells: CRHR1 agonism stimulates rat and mouse fetal testis steroidogenesis. PLoS One. 2012;7:e47359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18:378–403.

    CAS  PubMed  Google Scholar 

  • Migrenne S, Moreau E, Pakarinen P, Dierich A, Merlet J, Habert R, Racine C. Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life. PLoS One. 2012;7:e53257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:1–151.

    Article  Google Scholar 

  • Miller KMM, Al-Rayyan N, Ivanova MM, Mattingly KA, Ripp SL, Klinge CM, Prough RA. DHEA metabolites activate estrogen receptors alpha and beta. Steroids. 2013;78:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RT, Sharpe RM, Anderson RA, McKinnell C, Macpherson S, Smith LB, Wallace WH, Kelnar CJ, van den Driesche S. Diethylstilboestrol exposure does not reduce testosterone production in human fetal testis xenografts. PLoS One. 2013;8:e61726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molsberry RL, Carr BR, Mendelson CR, Simpson ER. Human chorionic gonadotropin binding to human fetal testes as a function of gestational age. J Clin Endocrinol Metab. 1982;55:791–4.

    Article  CAS  PubMed  Google Scholar 

  • Moniot B, Ujjan S, Champagne J, Hirai H, Aritake K, Nagata K, Dubois E, Nidelet S, Nakamura M, Urade Y, Poulat F, Boizet-Bonhoure B. Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis. Development. 2014;141:3561–71.

    Article  CAS  PubMed  Google Scholar 

  • Münsterberg A, Lovell-Badge R. Expression of the mouse anti-müllerian hormone gene suggests a role in both male and female sexual differentiation. Development. 1991;113:613–24.

    PubMed  Google Scholar 

  • N’Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud’homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS One. 2012;7:e51579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet. 1999;22:295–9.

    Article  CAS  PubMed  Google Scholar 

  • Nistal M, Paniagua R, Gonzalez-Peramato P, Reyes-Mugica M. Perspectives in pediatric pathology, Chapter 1. Normal development of testicular structures: from the bipotential gonad to the fetal testis. Pediatr Dev Pathol. 2015;18:88–102.

    Article  PubMed  Google Scholar 

  • O’Shaughnessy PJ, Fowler PA. Endocrinology of the mammalian testis. Reproduction. 2011;141:37–46.

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy PJ, Fowler PA. Development of the human fetal testis. Ann Endocrinol (Paris). 2014;75:48–53.

    Article  Google Scholar 

  • O’Shaughnessy PJ, Fleming LM, Jackson G, Hochgeschwender U, Reed P, Baker PJ. Adrenocorticotropic hormone directly stimulates testosterone production by the fetal and neonatal mouse testis. Endocrinology. 2003;144:3279–84.

    Article  PubMed  CAS  Google Scholar 

  • Pang S, Levine LS, Cederqvist LL, Fuentes M, Riccardi VM, Holcombe JH, Nitowsky HM, Sachs G, Anderson CE, Duchon MA, Owens R, Merkatz I, New MI. Amniotic fluid concentrations of delta 5 and delta 4 steroids in fetuses with congenital adrenal hyperplasia due to 21 hydroxylase deficiency and in anencephalic fetuses. J Clin Endocrinol Metab. 1980;51:223–9.

    Article  CAS  PubMed  Google Scholar 

  • Rabinovici J, Goldsmith PC, Roberts VJ, Vaughan J, Vale W, Jaffe RB. Localization and secretion of inhibin/activing subunits in the human and subhuman primate fetal gonads. J Clin Endocrinol Metab. 1991;73:1141–9.

    Article  CAS  PubMed  Google Scholar 

  • Rainey WE, Rehman KS, Carr BR. The human fetal adrenal: making adrenal androgens for placental estrogens. Semin Reprod Med. 2004;22:327–36.

    Article  CAS  PubMed  Google Scholar 

  • Richter-Unruh A, Korsch E, Hjiort O, Holterhus PM, Themmen AP, Wudy SA. Novel insertion frameshift mutation of the LH receptor gene: problematic clinical distinction of Leydig cell hypoplasia from enzyme defects primarily affecting testosterone biosynthesis. Eur J Endocrinol. 2005;152:255–9.

    Article  CAS  PubMed  Google Scholar 

  • Roberts VJ. Tissue-specific expression of inhibin/activing subunit and follistatin mRNAs in mid- to late-gestational age human fetal testis and epididymis. Endocrine. 1997;6:85–90.

    Article  CAS  PubMed  Google Scholar 

  • Robinson JD, Judd HL, Young PE, Jones OW, Yen S. Amniotic fluid androgens and estrogens in midgestation. J Clin Endocrinol Metab. 1977;45:755–7561.

    Article  CAS  PubMed  Google Scholar 

  • Rodeck CH, Gill D, Rosenberg DA, Collins WP. Testosterone levels in midtrimester maternal and fetal plasma and amniotic fluid. Prenat Diagn. 1985;5:175–81.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller-Fabre V, Carmona S, Merhi RA, Cate R, Habert R, Vigier B. Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology. 1998;139:1213–20.

    Article  CAS  PubMed  Google Scholar 

  • Samson M, Peale Jr FV, Frantz G, Rioux-Leclercq N, Rajpert-De Meyts E, Ferrara N. Human endocrine gland-derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pethological testis angiogenesis. J Clin Endocrinol Metab. 2004;89:4078–88.

    Article  CAS  PubMed  Google Scholar 

  • Scott HM, Hutchison GR, Jobling MS, McKinnell C, Drake AJ, Sharpe RM. Relationship between androgen action in the “male programming window,” fetal sertoli cell number, and adult testis size in the rat. Endocrinology. 2008;149:5280–7.

    Article  CAS  PubMed  Google Scholar 

  • Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30:883–925.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro E, Huang H, Masch RJ, McFadden DE, Wu XR, Ostrer H. Immunolocalization of androgen receptor and estrogen receptors alpha and beta in human fetal testis and epididymis. J Urol. 2005;174:1695–8.

    Article  CAS  PubMed  Google Scholar 

  • Shen WH, Moore CC, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the müllerian inhibiting substance gene: a link to the sex determination cascade. Cell. 1994;77:651–61.

    Article  PubMed  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Kold Jensen T, Jorgensen N, Swan SH, Sapra KJ, Ziebe S, Proskorn L, Juul A. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

    Article  CAS  PubMed  Google Scholar 

  • Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349:776–88.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Taniyama H, Tsunoda N, Shinbo H, Nagamine N, Nambo Y, Nagata SI, Watanabe G, Herath CB, Groome NP, Taya K. The testis as a major source of circulating inhibins in the male equine fetus during the second half of gestation. J Androl. 2002;23:229–36.

    CAS  PubMed  Google Scholar 

  • Tapanainen J, Kellokumpu-Lehtinen P, Pelliniemi L, Huhtaniemi I. Age-related changes in endogenous steroids of human fetal testis during early and midpregnancy. J Clin Endocrinol Metab. 1981;52:98–102.

    Article  CAS  PubMed  Google Scholar 

  • Tapanainen J, Voutilainen R, Jaffe RB. Low aromatase activity and gene expression in human fetal testes. J Steroid Biochem. 1989;33:7–11.

    Article  CAS  PubMed  Google Scholar 

  • Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update. 2015;21:310–28.

    Article  PubMed  Google Scholar 

  • Thomas GB, Davidson EJ, Engelhardt H, Baird DT, McNeilly AS, Brooks AN. Expression of mRNA and immunocytochemical localization of inhibin α- and inhibin βA-subunits in the fetal sheep testis. J Endocrinol. 1995;145:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Traupe H, Happle R. Clinical spectrum of steroid sulfatase deficiency: X-linked recessive ichthyosis, birth complications and cryptorchidism. Eur J Pediatr. 1983;140:19–21.

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Socin H, Salvi R, Daly AF, Gaillard RC, Quatresooz P, Tebeu PM, Pralong FP, Beckers A. Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene. N Engl J Med. 2004;351:2619–5.

    Article  CAS  PubMed  Google Scholar 

  • van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, McKinnell C, Dean A, Homer NZ, Jorgensen A, Camacho-Moll ME, Sharpe RM, Mitchell RT. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med. 2015a;7:288ra80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Driesche S, McKinnell C, Calarrão A, Kennedy L, Hutchison GR, Hrabalkova L, Jobling MS, Macpherson S, Anderson RA, Sharpe RM, Mitchell RT. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat and in human fetal testis xenografts. Environ Health Perspect. 2015b;123:223–30.

    PubMed  Google Scholar 

  • Vernunft A, Ivell R, Heng K, Anand-Ivell R. The male fetal biomarker INSL3 reveals substantial hormone exchange between fetuses in early pig gestation. PLoS One. 2016;11:e0152689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voutilainen R, Miller WL. Developmental expression of genes for the stereoidogenic enzymes P450scc (20,22-desmolase), P450c17 (17 alpha-hydroxylase/17,20-lyase), and P450c21 (21-hydroxylase) in the human fetus. J Clin Endocrinol Metab. 1986;63:1145–50.

    Article  CAS  PubMed  Google Scholar 

  • Wei YF, Rodi CP, Day ML, Wiegand RC, Needleman LD, Cole BR, Needleman P. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest. 1987;79:1325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh M, Suzuki H, Yamada G. The masculinization programming window. Endocr Dev. 2014;27:17–27.

    Article  PubMed  Google Scholar 

  • White PC. Ontogeny of adrenal steroid biosynthesis: why girls will be girls. J Clin Invest. 2006;116:872–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JD, George FW, Griffin JE. The hormonal control of sexual development. Science. 1981;211:1278–84.

    Article  CAS  PubMed  Google Scholar 

  • Wudy SA, Dörr HG, Solleder C, Djalali M, Homoki J. Profiling steroid hormones in amniotic fluid of midpregnancy by routine stable isotope dilution/gas chromatography-mass spectrometry: reference values and concentrations in fetuses at risk for 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1999;84:2724–8.

    CAS  PubMed  Google Scholar 

  • Yuan FP, Li X, Lin J, Schwabe C, Büllesbach EE, Rao CV, Lei ZM. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 2010;139:759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol. 2001;15:172–183.

    Google Scholar 

  • Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13:681–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Ivell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ivell, R., Anand-Ivell, R., Morley, S.D. (2017). Endocrinology of the Fetal Testis. In: Simoni, M., Huhtaniemi, I. (eds) Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-29456-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29456-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29456-8

  • Online ISBN: 978-3-319-29456-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics