Skip to main content

Biomedical Data Mining, Spatial

  • Living reference work entry
  • First Online:
  • 162 Accesses

Synonyms

Polynomials; Polynomials, orthogonal; Wavelets; Zernike; Zernike polynomials

Definition

The use of biomedical data in object classification presents several challenges that are well-suited to knowledge discovery and spatial modeling methods. In general, this problem consists of extracting useful patterns of information from large quantities of data with attributes that often have complex interactions. Biomedical data are inherently multidimensional and therefore difficult to summarize in simple terms without losing potentially useful information. A natural conflict exists between the need to simplify the data to make it more interpretable and the associated risk of sacrificing information relevant to decision support.

Transforming spatial features in biomedical data quantifies, and thereby exposes, underlying patterns for use as attributes in data mining exercises (Teh and Chin, 1988). To be useful, a data transformation must faithfully represent the original spatial...

This is a preview of subscription content, log in via an institution.

References

  • Born M, Wolf E (1980) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 6th edn. Pergamon Press, Oxford/New York

    MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Hoekman DH, Varekamp C (2001) Observation of tropical rain forest trees by airborne high-resolution interferometric radar. IEEE Trans Geosci Remote Sens 39(3):584–594

    Article  Google Scholar 

  • Iskander DR, Collins MJ, Davis B (2001a) Optimal modeling of corneal surfaces with Zernike polynomials. IEEE Trans Biomed Eng 48(1):87–95

    Article  Google Scholar 

  • Iskander DR, Collins MJ, Davis B, Franklin R (2001b) Corneal surface characterization: how many Zernike terms should be used? (ARVO) abstract. Invest Ophthalmol Vis Sci 42(4):896

    Google Scholar 

  • Kiely PM, Smith G, Carney LG (1982) The mean shape of the human cornea. J Modern Opt 29(8):1027–1040

    Google Scholar 

  • Laine AF (2000) Wavelets in temporal and spatial processing of biomedical images. Annu Rev Biomed Eng 02:511–550

    Article  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing, 2nd edn. Academic, New York

    MATH  Google Scholar 

  • Mandell RB (1996) A guide to videokeratography. Int Contact Lens Clin 23(6):205-28

    Article  Google Scholar 

  • Marsolo K, Parthasarathy S, Twa MD, Bullimore MA (2005) A model-based approach to visualizing classification decisions for patient diagnosis. In: Proceedings of the conference on artificial intelligence in medicine (AIME), Aberdeen, 23–27 July 2005

    Google Scholar 

  • Marsolo K, Twa M, Bullimore MA, Parthasarathy S (2006) Spatial modeling and classification of corneal shape. IEEE Trans Inf Technol Biomed

    MATH  Google Scholar 

  • Platzman L, Bartholdi J (1989) Spacefilling curves and the planar travelling salesman problem. J Assoc Comput Mach 46:719–737

    Article  MathSciNet  MATH  Google Scholar 

  • Schwiegerling J, Greinvenkamp JE, Miller JM (1995) Representation of videokeratoscopic height data with Zernike polynomials. J Opt Soc Am A 12(10):2105–2113

    Article  Google Scholar 

  • Teh C-H, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 10(4):496–513

    Article  MATH  Google Scholar 

  • Thibos LN, Applegate RA, Schwiegerling JT, Webb R (1999) Standards for reporting the optical aberrations of eyes. In: TOPS, Santa Fe. OSA

    Google Scholar 

  • Twa MD, Parthasarathy S, Raasch TW, Bullimore MA (2003) Automated classification of keratoconus: a case study in analyzing clinical data. In: SIAM international conference on data mining, San Francisco, 1–3 May 2003

    Google Scholar 

  • Zernike F (1934) Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1:689–704

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Marsolo, K., Twa, M., Bullimore, M., Parthasarathy, S. (2016). Biomedical Data Mining, Spatial. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-23519-6_102-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23519-6_102-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-23519-6

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics