Skip to main content

Dyslipidemia: Pathogenesis and Management

  • Living reference work entry
  • First Online:
Principles of Diabetes Mellitus

Abstract

The major cause of mortality in patients with both type 1 and type 2 diabetes is cardiovascular complications. Much of this might be attributed to changes in circulating levels of atherogenic and antiatherogenic lipoproteins. An atherogenic profile in patients with type 2 diabetes is termed diabetic dyslipidemia. Lifestyle and medical therapies can be used to treat this condition, leading to major changes in circulating lipids. In this chapter, we review the causes, therapies, and changes in outcomes due to treatment of hyperlipidemias in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ginsberg HN. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care. 1991;14(9):839–55.

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg IJ. Clinical review 124: Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86(3):965–71.

    Article  CAS  PubMed  Google Scholar 

  3. Surendran RP, Visser ME, Heemelaar S, Wang J, Peter J, Defesche JC, et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med. 2012;272(2):185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haffner SM. Management of dyslipidemia in adults with diabetes. Diabetes Care. 1998;21(1):160–78.

    Article  CAS  PubMed  Google Scholar 

  5. Eckel RH, Albers JJ, Cheung MC, Wahl PW, Lindgren FT, Bierman EL. High density lipoprotein composition in insulin-dependent diabetes mellitus. Diabetes. 1981;30(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson DE, Hata A, Kwong LK, Lingam A, Shuhua J, Ridinger DN, et al. Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes. J Clin Invest. 1993;92(1):203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chait A, Brunzell JD. Chylomicronemia syndrome. Adv Intern Med. 1992;37:249–73.

    CAS  PubMed  Google Scholar 

  8. Writing Group for the DERG, Orchard TJ, Nathan DM, Zinman B, Cleary P, Brillon D, et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015;313(1):45–53.

    Article  Google Scholar 

  9. Deckert T, Poulsen JE, Larsen M. Prognosis of diabetics with diabetes onset before the age of thirty-one. I. Survival, causes of death, and complications. Diabetologia. 1978;14(6):363–70.

    Article  CAS  PubMed  Google Scholar 

  10. Dorman JS, Laporte RE, Kuller LH, Cruickshanks KJ, Orchard TJ, Wagener DK, et al. The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study. Mortality results. Diabetes. 1984;33(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  11. Moss SE, Klein R, Klein BE. Cause-specific mortality in a population-based study of diabetes. Am J Public Health. 1991;81(9):1158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  13. American DA. Standards of medical care in diabetes – 2014. Diabetes Care. 2014;37 Suppl 1:S14–80.

    Article  Google Scholar 

  14. Maahs DM, Daniels SR, de Ferranti SD, Dichek HL, Flynn J, Goldstein BI, et al. Cardiovascular disease risk factors in youth with diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2014;130(17):1532–58.

    Article  PubMed  Google Scholar 

  15. Guy J, Ogden L, Wadwa RP, Hamman RF, Mayer-Davis EJ, Liese AD, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for Diabetes in Youth case–control study. Diabetes Care. 2009;32(3):416–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin North Am. 2006;35(3):491–510. vii-viii.

    Article  CAS  PubMed  Google Scholar 

  17. Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab. 2013;24(8):391–7.

    Article  CAS  PubMed  Google Scholar 

  18. Jaiswal M, Schinske A, Pop-Busui R. Lipids and lipid management in diabetes. Best Pract Res Clin Endocrinol Metab. 2014;28(3):325–38.

    Article  CAS  PubMed  Google Scholar 

  19. Boyne MS, Saudek CD. Effect of insulin therapy on macrovascular risk factors in type 2 diabetes. Diabetes Care. 1999;22 Suppl 3:C45–53.

    PubMed  Google Scholar 

  20. Nikkila EA, Hormila P. Serum lipids and lipoproteins in insulin-treated diabetes. Demonstration of increased high density lipoprotein concentrations. Diabetes. 1978;27(11):1078–86.

    Article  CAS  PubMed  Google Scholar 

  21. Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: is higher always better? J Clin Lipidol. 2011;5(5):387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verges B. Lipid disorders in type 1 diabetes. Diabetes Metab. 2009;35(5):353–60.

    Article  CAS  PubMed  Google Scholar 

  23. Kurisu S, Iwasaki T, Ishibashi K, Mitsuba N, Dohi Y, Nishioka K, et al. Effects of low-dose pioglitazone on glucose control, lipid profiles, renin-angiotensin-aldosterone system and natriuretic peptides in diabetic patients with coronary artery disease. J Renin Angiotensin Aldosterone Syst. 2013;14(1):51–5.

    Article  PubMed  Google Scholar 

  24. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333(9):541–9.

    Article  CAS  PubMed  Google Scholar 

  25. Derosa G, Cicero AF, Gaddi A, Ragonesi PD, Fogari E, Bertone G, et al. Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with glimepiride: a twelve-month, multicenter, double-blind, randomized, controlled, parallel-group trial. Clin Ther. 2004;26(5):744–54.

    Article  CAS  PubMed  Google Scholar 

  26. Podolsky S, Burney SW. Effects of long term sulfonylurea therapy on plasma insulin and fasting lipid levels. Diabete Metab. 1979;5(2):113–7.

    CAS  PubMed  Google Scholar 

  27. Monami M, Lamanna C, Desideri CM, Mannucci E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther. 2012;29(1):14–25.

    Article  CAS  PubMed  Google Scholar 

  28. Sun F, Wu S, Wang J, Guo S, Chai S, Yang Z, et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis. Clin Ther. 2015;37(1):225–41. e8.

    Article  CAS  PubMed  Google Scholar 

  29. Rizzo M, Rizvi AA, Spinas GA, Rini GB, Berneis K. Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors. Expert Opin Investig Drugs. 2009;18(10):1495–503.

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia. 2010;53(3):552–61.

    Article  CAS  PubMed  Google Scholar 

  31. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Stalenhoef A. Treatment options for hypertriglyceridemia: from risk reduction to pancreatitis. Best Pract Res Clin Endocrinol Metab. 2014;28(3):423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31(8):1716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tonkin A, Hunt D, Voysey M, Kesaniemi A, Hamer A, Waites J, et al. Effects of fenofibrate on cardiovascular events in patients with diabetes, with and without prior cardiovascular disease: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Am Heart J. 2012;163(3):508–14.

    Article  CAS  PubMed  Google Scholar 

  35. Manninen V, Elo MO, Frick MH, Haapa K, Heinonen OP, Heinsalmi P, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988;260(5):641–51.

    Article  CAS  PubMed  Google Scholar 

  36. Rubins HB, Robins SJ, Collins D. The veterans affairs high-density lipoprotein intervention trial: baseline characteristics of normocholesterolemic men with coronary artery disease and low levels of high-density lipoprotein cholesterol. Veterans Affairs Cooperative Studies Program High-Density Lipoprotein Intervention Trial Study Group. Am J Cardiol. 1996;78(5):572–5.

    Article  CAS  PubMed  Google Scholar 

  37. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  38. Group AS, Ginsberg HN, Elam MB, Lovato LC, Crouse 3rd JR, Leiter LA, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Article  Google Scholar 

  39. Fruchart JC, Sacks FM, Hermans MP. International Steering Committee of R. Implications of the ACCORD lipid study: perspective from the Residual Risk Reduction Initiative (R(3)i). Curr Med Res Opin. 2010;26(8):1793–7.

    Article  CAS  PubMed  Google Scholar 

  40. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357(9260):905–10.

    Google Scholar 

  41. Guyton JR. Combination drug therapy for combined hyperlipidemia. Curr Cardiol Rep. 1999;1(3):244–50.

    Article  CAS  PubMed  Google Scholar 

  42. Milone M, Lupoli R, Maietta P, Di Minno A, Bianco P, Ambrosino P, et al. Lipid profile changes in patients undergoing bariatric surgery: a comparative study between sleeve gastrectomy and mini-gastric bypass. Int J Surg. 2015;14:28–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Freitas Corradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Freitas Corradi, P., Agrawal, N., Gumaste, N., Goldberg, I.J. (2015). Dyslipidemia: Pathogenesis and Management. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20797-1_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20797-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics