Skip to main content

Fatty Acids as Mediators of Intercellular Signaling

  • Living reference work entry
  • First Online:
Cellular Ecophysiology of Microbe

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Mechanisms of intercellular communication as a function of population density exist in many bacteria. These signaling circuits are based on the release of diffusible molecules to the extracellular medium and their detection and subsequent alteration of global gene expression above certain concentration thresholds. Fatty acids are structural parts of different signal molecules, such as acyl homoserine lactones, where the length and modifications of the acyl side chains play a role as determinants of signal specificity. Yet, fatty acids and fatty acid derivatives are increasingly being reported as intra- and interspecies cell-cell communication signals and also mediate interactions of bacteria with other organisms. These signals appear to be particularly relevant in plant-associated bacteria, but are also present in other microorganisms, and could offer a chance to develop new strategies to combat pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi-a review. Med Mycol 50:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler BL, Losick R(2006) Bacterially speaking. Cell 125:237–246.

    Google Scholar 

  • Boon C, Deng Y, Wang LH, He Y, JL X, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36

    Article  CAS  PubMed  Google Scholar 

  • Camara M, Williams P, Hardman A (2002) Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2:667–676

    Article  CAS  PubMed  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant-Microbe Interact 11:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Wistrom C, Lindow SE (2008) A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T (2016) Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 9(409):ra1

    Article  PubMed  Google Scholar 

  • Cugini C, Morales DK, Hogan DA (2010) Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 156:3096–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinane M, Baysse C, Morrissey JP, O’Gara F (2005) Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens. Microbiology 151:3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Wu J, Eberl L, Zhang LH (2010) Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76:4675–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Cámara M, Williams P (2006) Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Griffin AS, Campbell GS, West SA (2007a) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P (2007b) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135

    Article  CAS  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  CAS  PubMed  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    Article  CAS  PubMed  Google Scholar 

  • Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Piñar R, Cámara M, Dubern JF, Ramos JL, Espinosa-Urgel M (2011) The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT 2440. Res Microbiol 162:773–781

    Article  PubMed  Google Scholar 

  • Fernández-Piñar R, Espinosa-Urgel M, Dubern JF, Heeb S, Ramos JL, Cámara M (2012) Fatty acid-mediated signalling between two Pseudomonas species. Environ Microbiol Rep 4:417–423

    Article  PubMed  Google Scholar 

  • Fouhy Y, Scanlon K, Schouest K, Spillane C, Crossman L, Avison MB, Ryan RP, Dow JM (2007) Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 189:4964–4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–334.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham JH (2013) Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol Plant Pathol 14:308–322

    Article  CAS  PubMed  Google Scholar 

  • Hays E, Wells E, Katzman I, Cain C, Jacobs CK, Thayer FA, Doisy SA, Gaby EA, Roberts WL, Muir EC, Carroll RD, Jones CJ, Wade NJ (1945) Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 159:725–750

    CAS  Google Scholar 

  • He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857

    Article  CAS  PubMed  Google Scholar 

  • He YW, Wu J, Cha JS, Zhang LH (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  CAS  PubMed  Google Scholar 

  • Krol E, Becker A (2014) Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proc Natl Acad Sci USA 111:10702–10707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480

    Article  CAS  PubMed  Google Scholar 

  • Lazazzera BA (2001) The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527

    Article  CAS  PubMed  Google Scholar 

  • Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT, Ionescu M (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce’s disease. Mol Plant-Microbe Interact 27:244–254

    Article  CAS  PubMed  Google Scholar 

  • Marques CN, Morozov A, Planzos P, Zelaya HM (2014) The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 80:6976–6991

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques CN, Davies DG, Sauer K (2015) Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8:816–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P (2001) The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 183:3537–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12:192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96:4360–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qazi SN, Counil E, Morrissey J, Rees CE, Cockayne A, Winzer K, Chan WC, Williams P, Hill PJ (2001) agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect Immun 69:7074–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  CAS  PubMed  Google Scholar 

  • Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19:341–345

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68:75–86

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM (2015) The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11(7):e1004986

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Del Poeta M (2011) Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185

    Article  CAS  PubMed  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  Google Scholar 

  • Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91:12619–12623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, He YW, DH W, Swarup S, Zhang LH (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Vílchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Wagner-Döbler I, Sztajer H (2010) Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem 11:1552–1162

    Article  PubMed  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, He Y, Gao Y, JE W, Dong YH, He C, Wang SX, Weng LX, JL X, Tay L, Fang RX, Zhang LH (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80:6724–6732

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Winzer K, Williams P (2001) Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 291:131–143

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Jensen V, Seeliger J, Feldmann I, Weber S, Schleicher E, Häussler S, Blankenfeldt W (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48:10298–10307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s group on cellular responses and regulatory mechanisms in bacterial populations and biofilms is funded by grant BFU2013-43469-P from Plan Estatal de I+D+I and EFDR funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Espinosa-Urgel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Espinosa-Urgel, M. (2016). Fatty Acids as Mediators of Intercellular Signaling. In: Krell, T. (eds) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-20796-4_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20796-4_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20796-4

  • Online ISBN: 978-3-319-20796-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics