Skip to main content

Toxicity of Hydrocarbons to Microorganisms

  • Living reference work entry
  • First Online:
  • 158 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Several classes of organic compounds are toxic for living organisms as they accumulate in and disrupt cell membranes. In these cases, the dose-dependent toxicity of a compound correlates with the logarithm of its partition coefficient between octanol and water (logP). Substances with a logP value between 1 and 5 are, in general, toxic for whole cells. Therefore, toxic effects of hydrocarbons on microorganisms can cause problems in bioremediation of highly contaminated sites. The toxic effect of most hydrocarbons is caused by general, nonspecific effects on membrane fluidity due to their accumulation in the lipid bilayer. Only exceptions are hydrocarbons with specific chemically active functional groups such as aldehydes and epoxides that show an additional chemical toxicity.

Most compounds with a higher hydrophobicity than logP of 4 such as e.g., alkanes, PAHs, and biphenyl(s) have very low water solubility, thus their bioavailability is too low to show a toxic effect. By combining the logP value with the water solubility of a compound the maximum membrane concentration (MMC) of a compound can be calculated. By using this parameter it is possible to predict the potential toxicity even of unknown hydrocarbons.

This is a preview of subscription content, log in via an institution.

References

  • Antunes-Madeira MC, Madeira VMC (1989) Membrane fluidity as affected by the insecticide lindane. Biochim Biophys Acta 982:161–166

    Article  CAS  PubMed  Google Scholar 

  • Aono R, Kobayashi H, Joblin KN, Horikoshi K (1994) Effects of organic solvents on growth of Escherichia coli K–12. Biosci Biotechnol Biochem 58:2009–2014

    Article  CAS  Google Scholar 

  • Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235

    Article  CAS  PubMed  Google Scholar 

  • Cabral JP (1991) Damage to the cytoplasmic membrane and cell death caused by dodine (dodecylguanidine monoacetate) in Pseudomonas syringae ATCC 12271. Antimicrob Agents Chemother 35:341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral MG, Viegas CA, Teixeira MC, Sa-Correia I (2003) Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population. Chemosphere 51:47–54

    Article  CAS  PubMed  Google Scholar 

  • Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Janssen DB, Witholt B (1995a) Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol. J Bacteriol 177:6894–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Nijenhuis A, Preusting H, Dolfing J, Janssen DB, Witholt B (1995b) Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in 2-liquid-phase continuous cultures. Enzym Microb Technol 17:647–652

    Article  CAS  Google Scholar 

  • de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499

    Article  Google Scholar 

  • Duldhardt I, Nijenhuis I, Schauer F, Heipieper HJ (2007) Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria. Appl Microbiol Biotechnol 77:705–711

    Article  CAS  PubMed  Google Scholar 

  • Ferrante AA, Augliera J, Lewis K, Klibanov AM (1995) Cloning of an organic solvent-resistance gene in Escherichia coli: the unexpected role of alkylhydroperoxide reductase. Proc Natl Acad Sci U S A 92:7617–7621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  • Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051

    Article  CAS  Google Scholar 

  • Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzym Microb Technol 23:483–500

    Article  CAS  Google Scholar 

  • Liu D, Thomson K, Kaiser KL (1982) Quantitative structure-toxicity relationship of halogenated phenols on bacteria. Bull Environ Contam Toxicol 29:130–136

    Article  CAS  PubMed  Google Scholar 

  • Neumann G et al (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann G et al (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito H, Koyasu J, Shigeoka T, Tomita I (1994) Cytotoxicity of chlorophenols to goldfish GFS cells with the MTT and LDH assays. Toxicol in Vitro 8:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, Poolman B, Konings WN, de Bont JA (1992) Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J Bacteriol 174:2986–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe S, Ramirez J, Pena A (1985) Effects of beta pinene on yeast membrane functions. J Bacteriol 161:1195–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe S, Rangel P, Espinola G, Aguirre G (1990) Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria. Appl Environ Microbiol 56:2114–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Heipieper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Heipieper, H.J., Martínez, P.M. (2016). Toxicity of Hydrocarbons to Microorganisms. In: Krell, T. (eds) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-20796-4_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20796-4_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20796-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics