Skip to main content

Mechanical Behavior of Nanocomposite Aerogels

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Aerogels are generally described in terms of brittle and elastic materials, like glasses or ceramics with poor and not predictable mechanical properties. We propose the synthesis of a nanocomposite aerogels with improved mechanical properties by addition of silica particles (aerosil; 20–100 nm) in the monomer solution. The elastic modulus and rupture strength increase, stiffening and strengthening the structure by a factor 5–8. The toughness, the critical flaw size, and the fracture energy increase also versus the silica particle concentration. Moreover, the mechanical strength distribution and the Weibull modulus, m, characterizing the statistical nature of flaw size in brittle materials show a more homogeneous flaw size distribution. Pores are considered as integral part of flaws, and small angle X-ray scattering shows that the usual fractal structure observed in aerogel disappears with the silica particle addition. The fractal structure in aerogel is characteristic of a large pore size distribution, but also of a large flaw size distribution.

If nanocomposites behave as brittle material under a tension stress, they exhibit a different response when the structure is submitted to a compression: densification and plastic hardening. These opposite behaviors (brittle and plastic) are surprisingly related to the same kinds of gel features: pore volume, silanol content, and the pore size distribution. Because of improved mechanical properties, these nanocomposites aerogels could be used as host matrices for the synthesis of glass ceramics, doped glasses, and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aegerter MA, Leventis N, Koebel MM. Aerogels handbook. New York: Springer; 2011.

    Book  Google Scholar 

  • Alaoui A, Woignier T, Perno F, Phalippou J. Stress intensity factors in silica alcogels and aerogels in aerogels. J Non-Cryst Solids. 2000;265:29–36.

    Article  Google Scholar 

  • Aravind PR, Sithara L, Mukundan P, Krishna PP, Warrier KGK. Silica alcogels for possible nuclear wastes confinement- a simulated study. Mater Sci Lett. 2007;61:2398–401.

    Article  Google Scholar 

  • Aravind PR, Shajesh P, Mukundan P, Krishna PP, Warrier KGK. Non- supercritically dried silica- silica composites aerogel and its possible application for confining nuclear wastes. J Sol–Gel Sci Technol. 2008;46:146–51.

    Article  Google Scholar 

  • Brinker J, Scherer S. Sol–gel science. New York: Academic; 1990.

    Google Scholar 

  • Courtens E, Pelous J, Phalippou J, Vacher R, Woignier T. Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys Rev Lett. 1987;58:128–31.

    Article  Google Scholar 

  • Despetis F, Calas S, Etienne P, Phalippou J. Effect of oxidation treatment on the crack propagation rate of aerogels. J Non-Cryst Solids. 2001;285:251–5.

    Article  Google Scholar 

  • Deschanel S, Vanel L, Godin N, Maire E, Vigier G, Ciliberto S. Mechanical response and fracture dynamics of polymeric foams. J Phys D Appl Phys. 2009;42:214001. doi:10.1088/0022-3727/42/21/.

    Article  Google Scholar 

  • Duffours L, Woignier T, Phalippou J. Plasticity of aerogels under isostatic pressure. J Non-Cryst Solids. 1995;186:321–7.

    Article  Google Scholar 

  • Dumas J, Quinson JF, Serughetti J. Hierarchy of pores and mechanical behavior of wet silica gels. J Non-Cryst Solids. 1990;125:244–9.

    Article  Google Scholar 

  • Elmer TH. Porous and reconstructed glasses. In: Engineered materials handbook, Ceramics and glasses, vol. 4. Materials Park: ASM international; 1992. p. 427–32.

    Google Scholar 

  • Emmerling A, Fricke J. Scaling properties and structure of aerogels. J Sol–gel Sci Tech. 1997;8:781–8.

    Google Scholar 

  • Etienne P, Phalippou J, Woignier T, Despetis F, Alaoui A. Slow crack growth in aerogels. J Non-Cryst Solids. 1995;188:19–26.

    Article  Google Scholar 

  • Evans AG, Tappin G. Effects of microstructure on the stress propagate inherent flaws. Proc Br Ceram Soc. 1972;23:275–96.

    Google Scholar 

  • Evans AG. Slow crack in brittle materials under dynamic loading conditions. Int J Fract. 1974;10:251–61.

    Article  Google Scholar 

  • Fricke J. Aerogels and their applications: aerogels and their applications aerogels and their applications. J Non-Cryst Solids. 1992;147–148:356–62.

    Article  Google Scholar 

  • Gibson LJ, Ashby MF. Cellular solids structure and properties. Oxford, UK: Pergamon Press; 1988.

    Google Scholar 

  • Griffith AA. The phenomenom of rupture and flow in solids Philos. TransR Soc London Ser A. 1920;221:168–98.

    Google Scholar 

  • Iler RK. The chemistry of silica. New York: Wiley; 1979.

    Google Scholar 

  • Li H, Lin Y, Tsui TY, Vlassak JJ. The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. J Mat Res. 2009;24:107–16.

    Article  Google Scholar 

  • Ma HS, Prevost JH, Jullien R, Scherer GW. J Non-Cryst Solids. 2001;285:216–21.

    Article  Google Scholar 

  • Marlière C, Woignier T, Dieudonné P, Primera J, Lamy M, Phalippou J. Two fractal structure in aerogel. J Non-Cryst Solids. 2001;285:175–81.

    Article  Google Scholar 

  • Michalske TA, Freiman SW. A molecular mechanism for stress corrosion in vitreous silica. J Amer Ceram Soc. 1983;66(4):284–8.

    Article  Google Scholar 

  • Phalippou J, Woignier T, Rogier R. Fracture toughness of silica aerogels. Rev Phys Appl. 1989;24:C4-191–6.

    Google Scholar 

  • Pauthe M, Quinson JF, Hdach H, Woignier T, Phalippou J, Scherer GW. Autoclave treatment effect on silica alcogel texture. J Non-Cryst Solids. 1991;130:1–7.

    Article  Google Scholar 

  • Pernot F, Baldet JF, Bonnel J, Zarzycki J, Rabischong P. Development of phosphate glass-ceramics for bone implants. Ceram Int. 1983;9(4):127–31.

    Article  Google Scholar 

  • Pirard R, Blacher S, Brouers F, Pirard JP. Interpretation of mercury porosimetry applied to aerogels. J Mat Res. 1995;10(8):2114–9.

    Article  Google Scholar 

  • Reynes J, Woignier T, Phalippou J. Permeability measurements in composites aerogels: application to nuclear waste storage. J Non-Cryst Solids. 2001;285:323–7.

    Article  Google Scholar 

  • Rice RW. Porosity of ceramics properties and applications. New York: Marcel Dekker; 1998.

    Google Scholar 

  • Schaeffer DW, Keefer KD. Structure of random porous materials: silica aerogel. Phys Rev Lett. 1986;56:2199–202.

    Article  Google Scholar 

  • Scherer GW, Smith DM, Qiu X, Anderson JM. Compression of aerogels. J Non-Cryst Solids. 1995;186:316–20.

    Article  Google Scholar 

  • Scherer G. Crack tip stress in gels. J Non-Cryst Solids. 1992;144:210–4.

    Article  Google Scholar 

  • Sullivan JD, Lauzon PH. Experimental probability estimators for Weibull plots. J Mat Sci Let. 1986;5:1245–7.

    Article  Google Scholar 

  • Toki M, Miyashita S, Takeuchi T, Kande S, Kochi A. A large-size silica glass produced by a new sol–gel process. J Non-Cryst Solids. 1988;100:479–82.

    Article  Google Scholar 

  • Vandeperre J, Wang J, Clegg WJ. Effects of porosity on the measured fracture energy of brittle materials. Philos Mag. 2004;84(34):3689–704.

    Article  Google Scholar 

  • Wiederhorn SM. Subcritical crack growth in ceramics. In: Fracture mechanics of ceramics. Bradt RC, Hasselman DPH, Lange FF, editors. Vol. 2. New York: Plenum Press; 1974. p. 613–46.

    Google Scholar 

  • Woignier T, Phalippou J, Sempere R, Pelous J. Analysis of the elastic behavior of silica aerogels taken as a percolative system. J Phys France. 1988;49:289–93.

    Article  Google Scholar 

  • Woignier T, Phalippou J, Prassas M. Glasses from aerogels. J Mat Sci. 1990;25:3118–26.

    Article  Google Scholar 

  • Woignier T, Scherer GW, Alaoui A. Stress in aerogel during depressurization of autoclave : II Silica gels. J Sol–gel Sci Tech. 1994;3:141–50.

    Article  Google Scholar 

  • Woignier T, Primera J, Lamy M, Fehr C, Anglaret E, Sempéré R, Phalippou J. The use of gels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. Journal Non-Cryst solids. 2005;350:298–306.

    Google Scholar 

  • Woignier T, Primera J. Mechanical behaviour of nano composites aerogels. J Sol–gel Sci Tech. 2011; 58:385–93.

    Google Scholar 

  • Woignier T, Primera J, Alaoui A, Etienne P, Despestis F, Calas-Etienne S. Mechanical properties and brittle behavior of silica aerogels. Gels. 2015;1:256–75.

    Article  Google Scholar 

  • Zarzycki J. Critical stress intensity factors of wet gels. J Non-Cryst Solids. 1988;100:359–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Woignier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Woignier, T., Primera, J., Alaoui, A., Calas-Etienne, S. (2016). Mechanical Behavior of Nanocomposite Aerogels. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics