Skip to main content

Sol–Gel Nano-/Micropatterning Process

  • Living reference work entry
  • First Online:
  • 363 Accesses

Abstract

The nano-/micropatterning of sol–gel-derived materials has been performed by means of embossing, molding, photo-assisted techniques, and so on. The research progress and some practical applications for each technique are reviewed, with embossing technique, for waveguides, optical gratings, memory disks, microlens arrays, and light-emitting diodes; molding technique including microcontact printing, replica molding, microtransfer molding, and micromolding in capillaries, for fluorophore-doped xerogels, photonic crystals, optical and bioactive glasses, and ionic conductors; and photo-assisted technique, for waveguides, gratings, antireflection coatings, and hologram recording films. Moreover, several advanced techniques are introduced such as hydrophobic–hydrophilic, photocatalytic, photolocking, and ink-jet patterning processes.

This is a preview of subscription content, log in via an institution.

References

  • Andrews MP, Najafi SI. Passive and sol gel materials and devices. In: Critical review of optical science and technology, CR 68, SPIE. Bellingham: SPIE; 1997. p. 253–85.

    Google Scholar 

  • Bae B-S, Park O-H, Charters R, Luther-Davies B, Atkins GR. Direct laser writing of self-developed waveguides in benzyldimethylketal-doped sol–gel hybrid glass. J Mater Res. 2001;16:3184–7.

    Article  Google Scholar 

  • Blanc D, Pelissier S, Saravanamuttu K, Najafi SI, Andrews MP. Self-processing of surface-relief gratings in photosensitive hybrid sol–gel glasses. Adv Mater. 1999;18:1508–11.

    Article  Google Scholar 

  • Brusatin G, Della Giustina G, Romanato F, Guglielmi M. Design of hybrid sol-gel films for direct x-ray and electron beam nanopatterning. Nanotechnology. 2008;19:175306_1–7.

    Article  Google Scholar 

  • Byeon K-J, Cho J-Y, Jo H-B, Lee H. Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin. Appl Surf Sci. 2015;346:354–60.

    Article  Google Scholar 

  • Calvert P. Inkjet printing for materials and devices. Chem Mater. 2001;13:3299–305.

    Article  Google Scholar 

  • Carregal-Romero E, Llobera A, Cadarso VJ, Darder M, Aranda P, Dominguez C, Ruiz-Hitzky E, Fernandez-Sanchez C. One-step patterning of hybrid xerogel materials for the fabrication of disposable solid-state light emitters. ACS Appl Mater Interfaces. 2012;4:5029–37.

    Article  Google Scholar 

  • Collins RJ, Shin H, DeGuire MR, Heuer AH, Sukenik CN. Low temperature deposition of patterned TiO2 thin films using photopatterned self-assembled monolayers. Appl Phys Lett. 1996;69:860–2.

    Article  Google Scholar 

  • Danzebrink R, Agerter MA. Deposition of micropatterned coating using an ink-jet technique. Thin Solid Films. 1999;351:115–8.

    Article  Google Scholar 

  • Fabes BD, Taylor DJ, Weisenbach L, Stuppi MM, Klein DL, Raymond LJ, Zelinski BJJ, Birnie III DP. Laser processing of channel waveguide structures in sol–gel coatings. In: Mackenzie JD, Ulrich DR, editors. Proceedings of the SPIE, vol. 1328, Sol–Gel Optics. Bellingham: SPIE; 1990. p. 319–28.

    Google Scholar 

  • Gombert A, Glaubitt W, Rose K, Dreibholz J, Bläsi B, Heinzel A, Sporn D, Döll W, Wittwer V. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films. 1999;351:73–8.

    Article  Google Scholar 

  • Guo LJ. Nanoimprint lithography: methods and material requirements. Adv Mater. 2007;19:495–513.

    Article  Google Scholar 

  • Heuberger K, Lukosz W. Embossing technique for fabricating surface relief gratings on hard oxide waveguides. Appl Opt. 1986;25:1499–504.

    Article  Google Scholar 

  • Jeon NL, Clem PG, Payne DA, Nuzzo RG. Patterning of dielectric oxide thin layers by micro-contact printing of self-assembled monolayers. J Mater Res. 1995;10:2996–9.

    Article  Google Scholar 

  • Kawamura G, Sato S, Muto H, Sakai M, Lim PB, Watanabe K, Inoue M, Matsuda A. AgBr nanocrystal-dispersed silsesquioxane-titania hybrid films for holographic materials. Mater Lett. 2010;64:2648–51.

    Article  Google Scholar 

  • Kawamura G, Tsurumi Y, Muto H, Inoue M, Matsuda A. Sol-Gel synthesis of novel photosensitive material with advanced holographic properties. J Ceram Soc Jpn. 2011a;119:426–9.

    Article  Google Scholar 

  • Kawamura G, Tsurumi Y, Muto H, Sakai M, Inoue M, Matsuda A. Reversible conversion between AgCl and Ag in AgCl-Doped RSiO3/2-TiO2 films prepared by a sol-gel technique. Mater Chem Phys. 2011b;130:264–9.

    Article  Google Scholar 

  • Kawamura G, Ikeda K, Ito T, Muto H, Lim PB, Inoue M, Matsuda A. Reversible change of diffraction efficiency in Cl-containing 3-glycidoxypropyl silsesquioxane films co-doped with Ag and Cu. J Ceram Soc Jpn. 2016;124:150–4.

    Article  Google Scholar 

  • Kikuta K, Takagi K, Hirano S. Photoreaction of titanium-based metal-organic compounds for ceramic fine patterning. J Am Ceram Soc. 1999a;82:1569–72.

    Article  Google Scholar 

  • Kikuta K, Sugimoto K, Takagi K, Hirano S. Patterning of tin oxide film from photoreactive precursor solutions prepared via the addition of n-phenyldiethanolamine. J Am Ceram Soc. 1999b;82:2263–5.

    Article  Google Scholar 

  • Kim E, Xia Y, Whitesides GM. Polymer microstructures formed by moulding in capillaries. Nature. 1995;376:581–4.

    Article  Google Scholar 

  • Koumoto K, Seo S, Sugiyama T, Seo WS, Dressick WJ. Micropatterning of titanium dioxide on self-assembled monolayers using a liquid-phase deposition process. Chem Mater. 1999;11:2305–9.

    Article  Google Scholar 

  • Krchnavek RR, Gilgen HH, Osgood RM. Maskless laser writing of silicon dioxide. J Vac Sci Technol B2. 1984;4:641–4.

    Article  Google Scholar 

  • Krug H, Merl N, Schmidt H. Fine patterning of thin sol–gel films. J Non-Cryst Solids. 1992;147/148:447–50.

    Article  Google Scholar 

  • Lukosz W, Tiefenthaler K. Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt Lett. 1983;8:537–9.

    Article  Google Scholar 

  • Masuda Y, Seo WS, Koumoto K. Arrangement of nanosized ceramic particles on self-assembled monolayers. Jpn J Appl Phys. 2000;39:4596–600.

    Article  Google Scholar 

  • Masuda Y, Sugiyama T, Koumoto K. Micropatterning TiO2 thin films from an aqueous solution by a site-selective immersion method. J Mater Chem. 2002;12:2643–7.

    Article  Google Scholar 

  • Matsuda A, Matsuno Y, Kataoka S, Katayama S, Tsuno T, Tohge N, Minami T. Pre grooving on glass disks by the sol–gel method, (part 1) formation and evaluation of pregrooved glass disks, and (part 2) effects of the addition of organic polymers on the formation of glass films in the SiO2-TiO2 system. In: Mackenzie JD, Ulrich DR, editors. Proceedings of the SPIE, vol. 1328, Sol–Gel Optics. Bellingham: SPIE; 1990. p. 62–79.

    Google Scholar 

  • Matsuda A, Matsuno Y, Tatsumisago M, Minami T. Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc. 1998a;81:2849–52.

    Article  Google Scholar 

  • Matsuda A, Matsuno Y, Mitsuhashi Y, Tohge N, Minami T. Optical disk substrate fabricated by the sol–gel method. In: Schmidt H, editor. Key engineering materials, vol. 150. Durnten: Trans Tech Publications; 1998b. p. 111–20.

    Google Scholar 

  • Matsuda A, Sasaki T, Tastumisago M, Minami T. Micropatterning on methylsilsesquioxane-phenylsilsesquioxane thick films by the sol–gel method. J Am Ceram Soc. 2000;83:321–13213.

    Google Scholar 

  • Matsuda A, Sasaki T, Tadanaga K, Tatsumisago M, Minami T. Photocatalytic micropatterning of transparent ethylsilsesquioxane–titania hybrid films. Chem Mater. 2002;14:2693–700.

    Article  Google Scholar 

  • Matsuno Y, Matsuda A, Katayama S, Tohge N, Minami T. A practical fabrication process of pre grooves on glass disks by the sol–gel method. Proceedings of the XVI International Congress on Glass; 1992. p. 139–44.

    Google Scholar 

  • Menard E, Meitl MA, Sun YG, Park JU, Shir DJL, Nam YS, Jeon S, Rogers JA. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev. 2007;107:1117–60.

    Article  Google Scholar 

  • Menning M, Gier A, Krung H, Schmidt H. Preparation of micropatterns with profile heights up to 30 microns from silica sols. In: Dunn BS, Pope EJ, Schmidt HK, Shibata S, editors. Proceedings of the SPIE, vol. 3136, Sol–Gel Optics IV. Bellingham: SPIE; 1997. p. 480–5.

    Google Scholar 

  • Mitsuhashi Y, Matsuda A, Matsuno Y. Sol–gel technology for optical disk application. In: Mackenzie JD, editor. Proceedings of the SPIE, vol. 1758, Sol–Gel Optics II. Bellingham: SPIE; 1992. p. 105–12.

    Google Scholar 

  • Nishii J, Kintaka K, Tohge N, Noma N, Hasegawa M, Mizutani A, Kikuta H. Low-reflection microstructure formed by sol–gel process. Jpn J Appl Phys. 2002;41:5210–3.

    Article  Google Scholar 

  • Ohya T, Kabata M, Ban T, Ohya Y, Takahashi Y. Effect of α-hydroxyketones as chelate ligands on dip-coating of zirconia thin films. J Sol–Gel Sci Technol. 2002;25:43–50.

    Article  Google Scholar 

  • Pang ML, Lin J, Cheng ZY, Fu J, Xing RB, Wang SB. Patterning and luminescent properties of nanocrystalline Y2O3: Eu3+ phosphor films by sol-gel soft lithography. Mater Sci Eng B. 2003a;100:124–31.

    Article  Google Scholar 

  • Pang ML, Lin J, Fu J, Xing RB, Luo CX, Han YC. Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithography. Opt Mater. 2003b;23:547–58.

    Article  Google Scholar 

  • Park J-U, Kim W-S, Bae B-S. Photoinduced low refractive index photosensitive organic–inorganic-hybrid material. J Mater Chem. 2003;13:738–41.

    Article  Google Scholar 

  • Que W, Kam CH. Sol–gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane. Opt Eng. 2002;41:1733–7.

    Article  Google Scholar 

  • Roncone RL, Weller-Brophy LA, Weisenbach L, Zelinski BJJ. Embossed gratings in sol–gel waveguides: pre-emboss heat treatment effects. J Non-Cryst Solids. 1991;128:111–7.

    Article  Google Scholar 

  • Ryu S-W, Choi H-J, Choo S, Kim C-H, Lee H. Fabrication of rigid stamp on a cylindrical substrate using hydrogen silsesquioxane/ZrO2 nanoparticle composite materials for roll-to-roll nanoimprinting process. J Sol-Gel Sci Technol. 2015;73:628–33.

    Article  Google Scholar 

  • Saravanamuttu K, Du XM, Najafi SI, Andrews MP. Photoinduced structural relaxation and densification in sol–gel-derived nanocomposite thin films: implications for integrated optics device fabrication. Can J Chem. 1998;76:1717–29.

    Google Scholar 

  • Satyanarayana VSV, Sihgh V, Kalyani V, Pradeep CP, Sharma S, Ghosh S, Gonsalves KE. A hybrid polymeric material bearing a ferrocene-based pendant organometallic functionality: synthesis and applications in nanopatterning using EUV lithography. RSC Adv. 2014;4:59817–20.

    Article  Google Scholar 

  • Shimmo K, Sekiguchi Y, Kobayashi F, Komaba N, Arima Y, Satoh Y, Nagata H, Nagasawa S, Nakama K. Multichannel optical power monitor module for DWDM networks using a novel glass grating. In: Burpee D, Frantz R, Junn J, editors. Proceedings of the national fiber optic engineers conference. Telcordia Technologies; 2001. p. 1101–7.

    Google Scholar 

  • Shinmou K, Tohge N, Minami T. Fine-patterning of ZrO2 thin films by the photolysis of chemically modified gel films. Jpn J Appl Phys. 1994;33:L1181–4.

    Article  Google Scholar 

  • Shinmou K, Nakama K, Koyama T. Fabrication of micro-optic elements by the sol–gel method. J Sol–Gel Sci Technol. 2000;19:267–9.

    Article  Google Scholar 

  • Stehlin F, Bourgin Y, Spangenberg A, Jourlin Y, Parriaux O, Reynaud S, Wieder F, Soppera O. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography. Opt Lett. 2012;37:4651–3.

    Article  Google Scholar 

  • Stein A, Schroden RC. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr Opin Solid State Mater Sci. 2001;5:553–64.

    Article  Google Scholar 

  • Tadanaga K, Owan T, Morinaga J, Urbanek S, Minami T. Fine patterning of transparent, conductive SnO2 thin films by UV-irradiation. J Sol–Gel Sci Technol. 2000a;19:791–4.

    Article  Google Scholar 

  • Tadanaga K, Morinaga J, Matsuda A, Minami T. Superhydrophobic–superhydrophilic micropatterning on flowerlike alumina coating film by the sol–gel method. Chem Mater. 2000b;12:590592.

    Article  Google Scholar 

  • Tadanaga K, Morinaga J, Fujii T, Matsuda A, Minami T. Formation of convexly shaped silica micropatterns on sol–gel derived films using a difference in surface free energy. Glass Technol. 2002;43C:275–7.

    Google Scholar 

  • Takahashi Y, Ohsugi A, Arafuka T, Ohya T, Ban T, Ohya Y. Development of new modifiers for titanium alkoxide-based sol–gel process. J Sol–Gel Sci Technol. 2000;17:227–38.

    Article  Google Scholar 

  • Taylor DJ, Fabes BD. Laser processing of sol–gel coatings. J Non-Cryst Solids. 1992;147/148:457–62.

    Article  Google Scholar 

  • Tohge N, Matsuda A, Minami T, Matsuno Y, Katayama S, Ikeda Y. Fine-patterning on glass substrates by the sol–gel method. J Non-Cryst Solids. 1988;100:501–5.

    Article  Google Scholar 

  • Tohge N, Shinmou K, Minami T. Effects UV-irradiation on the formation of oxide thin films from chemically modified metal-alkoxides. J Sol–Gel Sci Technol. 1994;2:581–5.

    Article  Google Scholar 

  • Tohge N. Photosensitivity of gel films derived from chemically modified metal-alkoxides and their application to the fine-patterning of oxide thin films. In: Sol–Gel processing of advanced materials, Ceramic transactions, vol. 81. Hoboken: Wiley; 1998. p. 209–16.

    Google Scholar 

  • Tohge N, Zhao G, Chiba F. Photosensitive gel films prepared by the chemical modification and their application to surface-relief gratings. Thin Solid Films. 1999;351:85–90.

    Article  Google Scholar 

  • Tohge N, Hasegawa M, Noma N. Fabrication of two-dimensional gratings using photosensitive gel films and their characterization. J Sol–Gel Sci Technol. 2003;26:903–7.

    Article  Google Scholar 

  • Trau M, Yao N, Kim E, Xia Y, Whitesides GM, Aksay IA. Microscopic patterning of orientated mesoscopic silica through guided growth. Nature. 1997;390:674–6.

    Google Scholar 

  • Uhlmann DR, Boulton JM, Teowee G, Weisenbach L, Zelinski BJJ. Sol gel synthesis of optical thin films and coatings. In: Mackenzie JD, Ulirch DR, editors. Proceedings of the SPIE, vol. 1328, Sol–Gel Optics. Bellingham: SPIE; 1990. p. 270–95.

    Google Scholar 

  • Veldhuis SA, George A, Nijland M, ten Elshof JE. Concentration dependence on the shape and size of sol-gel-derived yttria-stabilized zirconia ceramic features by soft lithographic patterning. Langmuir. 2012;28:15111–7.

    Article  Google Scholar 

  • Wang WX, Cheng ZY, Yang PP, Hou ZY, Li CX, Li GG, Dai YL, Lin J. Patterning of YVO4:Eu3+ luminescent films by soft lithography. Adv Funct Mater. 2011;21:456–63.

    Article  Google Scholar 

  • Wilbur JL, Kumar A, Kim E, Whitesides GM. Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater. 1994;6:600–4.

    Article  Google Scholar 

  • Xia Y, Kim E, Zhao X-M, Rogers JA, Prentiss M, Whitesides GM. Complex optical surfaces formed by replica molding against elastomeric masters. Science. 1996;273:347–9.

    Article  Google Scholar 

  • Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed. 1998;37:550–75.

    Article  Google Scholar 

  • Xia Y, Rogers JA, Paul KE, Whitesides GM. Unconventional methods for fabricating and patterning nanostructures. Chem Rev. 1999;99:1823–48.

    Article  Google Scholar 

  • Yamada N, Yoshinaga I, Katayama S. Processing and optical properties of patternable inorganic-organic hybrid films. J Appl Phys. 1999;85:2423–7.

    Article  Google Scholar 

  • Yamaguchi H, Tsukamoto Y, Watanabe F, Sato A, Saito M, Honda H, Murahata M, Yanagisawa M, Tsuno T. Extremely durable CD-ROM with a novel structure. Proceedings of the SPIE, vol. 1499, Optical Data Storage ’91; 1991. p. 29–38.

    Google Scholar 

  • Yamamoto H, Hori M, Nakama K, Shinmou K. Fabrication of echelon gratings by sol–gel molding method. In: Kuroda K, Hatakoshi G, editors. Proceedings of the 8th microoptics conference ’01. Tokyo: The Japan Society of Applied Physics; 2001. p. 308–11.

    Google Scholar 

  • Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD. Hierarchically ordered oxides. Science. 1998;282:2244–6.

    Article  Google Scholar 

  • Yang P, Wirnsberger G, Huang HC, Cordero SR, McGehee MD, Scott B, Deng T, Whitesides GM, Chmelka BF, Buratto SK, Stucky GD. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science. 2000;287:465–7.

    Article  Google Scholar 

  • Yogo T, Takeichi Y, Kikuta K, Hirano S. Ultraviolet patterning of alkoxy-derived lithium niobate film. J Am Ceram Soc. 1995;78:1649–52.

    Article  Google Scholar 

  • Zhao G, Tohge N, Nishii J. Fabrication and characterization of diffraction gratings using photosensitive Al2O3 gel films. Jpn J Appl Phys. 1998;37:1842–6.

    Article  Google Scholar 

  • Zhao X-M, Xia Y, Whitesides GM. Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater. 1996;8:837–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsunori Matsuda or Go Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Matsuda, A., Kawamura, G. (2016). Sol–Gel Nano-/Micropatterning Process. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics