Skip to main content

Sol–Gel Processing for Battery and Fuel Cell Applications

  • Living reference work entry
  • First Online:

Abstract

Fuel cells are electrochemical devices that convert the chemical energy of a fuel and oxidant directly to electrical energy. Three types of fuel cells are (a) proton-exchange membrane fuel cells (PEMFCs), (b) molten carbonate fuel cells (MCFCs), and (c) solid oxide fuel cells (SOFCs). In each case, there is a role for sol–gel processing. In the case of PEMFC, sol–gel modifications to the membrane are designed to increase the operating temperature. In the case of MCFC, sol–gel corrosion barriers extend the lifetime of the current collector. Finally, sol–gel processing is being used to assemble the electrolyte and electrode layers in SOFC and related oxygen-generating devices. Examples are given for the application of sol–gel processing in each system, pointing out the derived benefits and areas for further development.

This is a preview of subscription content, log in via an institution.

References

  • Aparicio M, Klein LC, Adjemian KT, Bocarsly AB. SiO2–P2O5–ZrO2 sol–gel/NAFION™ composite membranes for PEMFC. In: Manthiram A, Kumta P, Sundaram SK, Ceder G, editors. Ceramic transactions 127: materials for electrochemical energy conversion and storage. Westerville: American Ceramic Society; 2002. p. 167–76.

    Google Scholar 

  • Aparicio M, Damay F, Klein LC. Characterization of SiO2–P2O5–ZrO2 sol–gel/NAFION™ composite membranes. J Sol–Gel Sci Technol. 2003;26:1055–9.

    Article  Google Scholar 

  • Apichatachutapan W, Moore RB, Mauritz KA. Asymmetric Nafion/(zirconium oxide) hybrid membranes via in situ sol–gel chemistry. J Appl Polym Sci. 1996;62:417–26.

    Article  Google Scholar 

  • Badwal SPS. Stability of solid oxide fuel cell components. Solid State Ion. 2001;143:39–46.

    Article  Google Scholar 

  • Barboux P, Tarascon JM, Shokoohi FK. The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. J Solid State Chem. 1991;94:185–96.

    Article  Google Scholar 

  • Baucke FGK. Electrochromic applications. Mater Sci Eng. 1991;B10:285–92.

    Article  Google Scholar 

  • Biendenkopf P, Spiegel M, Grabke HJ. The corrosion behavior of Fe–Cr alloys containing Co, Mn and/or Ni and of a Co-base alloy in the presence of molten (Li, K)-carbonate. Mater Corros. 1997;48:731–7.

    Article  Google Scholar 

  • Boilot JP, Colomban P. Superionic conductors from the sol–gel process. In: Klein LC, editor. Sol–gel technology for thin films, fibers, preforms, electronics and specialty shapes. Park Ridge: Noyes; 1988. p. 303–29.

    Google Scholar 

  • Brugnoni C, Ducati U, Scagliotti M. SOFC cathode/electrolyte interface. Part I: Reactivity between La0.85Sr0.15MnO3 and ZrO2–Y2O3. Solid State Ion. 1995;76:177–82.

    Article  Google Scholar 

  • Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ion. 1992;53–56:597–605.

    Article  Google Scholar 

  • Chen W, Klein LC, Huang C. Solution preparation of Li(Co, Fe)O2 coatings for molten carbonate fuel cell components. J Sol–Gel Sci Technol. 2001;27:203–11.

    Article  Google Scholar 

  • Cheng S, Leng W, Zhang J, Cao C. Electrochemical properties of the pasted nickel electrode using surface modified Ni(OH)2 powder as active material. J Power Sources. 2001;101:248–52.

    Article  Google Scholar 

  • Ciureanu M, Wang H. Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells. I. Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes. J Electrochem Soc. 1999;146(11):4031–40.

    Article  Google Scholar 

  • Cronin JP, Tarico DJ, Tonazzi JCL, Agrawal A, Kennedy SR. Microstructure and properties of sol–gel deposited WO3 coatings for large area electrochromic windows. Sol Energy Mater Sol Cells. 1993;29:371–86.

    Article  Google Scholar 

  • Damay F, Klein LC. AC impedance spectroscopy study of proton-exchange membrane nanocomposites. In: Nutt SR, Vaia RA, Rodgers W, Hagenauer GL, Beall GW, editors. MRS Vol. 733E: polymer nanocomposites. Warrendale: Materials Research Society; 2002. p. T.1.2.1–6.

    Google Scholar 

  • Deng Q, Moore RB, Mauritz KA. Novel Nafion/ORMOSIL hybrids via in situ sol–gel reactions. 1. Probe of ORMOSIL phase nanostructures by infrared spectroscopy. Chem Mater. 1995;7:2259–68.

    Article  Google Scholar 

  • Deng Q, Cable KM, Moore RB, Mauritz KA. Small-angle X-ray scattering studies of Nafion/[silicon oxide] and Nafion/ORMOSIL nanocomposites. J Polym Sci: Part B: Polym Phys. 1996a;34:1917–23.

    Article  Google Scholar 

  • Deng Q, Jarrett W, Moore RB, Mauritz KA. Novel Nafion/ORMOSIL hybrids via in situ sol–gel reactions. 2. Probe of ORMOSIL phase nanostructure by29Si solid state NMR spectroscopy. J Sol–Gel Sci Technol. 1996b;7:177–90.

    Article  Google Scholar 

  • Deng Q, Hu Y, Moore RB, McCormick CL, Mauritz KA. Nafion/ORMOSIL hybrids via in situ sol–gel reactions. 3. Pyrene fluorescence probe investigations of nanoscale environment. Chem Mater. 1997;9:36–44.

    Article  Google Scholar 

  • Deng Q, Moore RB, Mauritz KA. Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties. J Appl Polym Sci. 1998a;68:747–63.

    Article  Google Scholar 

  • Deng Q, Wilkie CA, Moore RB, Mauritz KA. TGA–FTIR investigation of the thermal degradation of Nafion and Nafion/[silicon oxide]-based nanocomposites. Polymer. 1998b;39:5961–72.

    Article  Google Scholar 

  • Denis MC, Lalande G, Guay D, Dodelet JP, Schulz R. High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. J Appl Electrochem. 1999;29:951–60.

    Article  Google Scholar 

  • Dotson RL, Woodard KE. Electrosynthesis with perfluorinated ionomer membranes in chlor-alkali cells. In: Eisenberg A, Yeager HL, editors. Perfluorinated ionomer membranes, ACS symposium series, vol. 180. Washington, DC: American Chemical Society; 1982. p. 311–64.

    Chapter  Google Scholar 

  • Faure C, Delmas C, Fouassier M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. J Power Sources. 1991;35:279–90.

    Article  Google Scholar 

  • Gibson IR, Dransfield GP, Irvine JTS. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J Mater Sci. 1998;33:4297–305.

    Article  Google Scholar 

  • Gierke TD, Munn GE, Wilson FC. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J Polym Sci. 1981;19:1687–704.

    Google Scholar 

  • Granqvist CG. Progress in electrochromics: tungsten oxide revisited. Electrochim Acta. 1999;44:3005–15.

    Article  Google Scholar 

  • Greenberg CB. Optically switchable thin films: a review. Thin Solid Films. 1994;251:81–93.

    Article  Google Scholar 

  • Hammouche A, Schouler EJL, Henault M. Electrical and thermal properties of Sr-doped lanthanum manganites. Solid State Ion. 1988;28–30:1205–7.

    Article  Google Scholar 

  • Harmer MA, Farneth WE, Sun Q. High surface area Nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc. 1996;118:7708–15.

    Article  Google Scholar 

  • Hsaio YC, Selman JR. The degradation of SOFC electrodes. Solid State Ion. 1997;98:33–8.

    Article  Google Scholar 

  • Kipling B. General applications of perfluorinated ionomer membranes. In: Eisenberg A, Yeager HL, editors. Perfluorinated ionomer membranes, ACS symposium series, vol. 180. Washington, DC: American Chemical Society; 1982. p. 475–87.

    Chapter  Google Scholar 

  • Klein LC. Electrochromic sol–gel coatings. In: Schwartz M, editor. Encyclopedia of smart materials. New York: Wiley Interscience; 2002. p. 356–62.

    Google Scholar 

  • Klein LC, Ho SF, Szu S-P, Greenblatt M. Applications of AC complex impedance spectroscopy to understanding transport properties in lithium silicate gels. In: Perry DL, editor. Applications of analytical techniques to the characterization of materials. New York: Plenum Press; 1991. p. 101–18.

    Chapter  Google Scholar 

  • Klein LC, Laby L, Lous G. Sol–gel processing for lithium battery materials. In: Gnanam FD, editor. Sol–gel processing of advanced ceramics. New Delhi: Oxford/IBH; 1996. p. 205–22.

    Google Scholar 

  • Kordesch K, Simader G. Fuel cells and their applications. New York: VCH-Weinheim; 1996.

    Book  Google Scholar 

  • Kreuer KD. On the development of proton conducting materials for technological applications. Solid State Ion. 1997;97:1–15.

    Article  Google Scholar 

  • Kuo JH, Anderson HU, Sparlin DM. Oxidation–reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J Solid State Chem. 1989;83:52–60.

    Article  Google Scholar 

  • Kuo JH, Anderson HU, Sparlin DM. Oxidation–reduction behavior of undoped and Sr-doped LaMnO3: defect structures, electrical conductivity, and thermoelectric power. J Solid State Chem. 1990;87:55–63.

    Article  Google Scholar 

  • Lee SJ, Murkerjee S, Ticianelli EA, McBreen J. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta. 1999;44:3283–93.

    Article  Google Scholar 

  • Lessing PA. Mixed-cation oxide powders via polymeric precursors. Ceram Bull. 1989;68(5):1002–7.

    Google Scholar 

  • Livage J, Sanchez C. Sol–gel chemistry. J Non-Cryst Solids. 1992;145:11–9.

    Article  Google Scholar 

  • Mackenzie JD, Bescher EP. Structures, properties and potential applications of Ormosils. J Sol–Gel Sci Technol. 1998;13:371–7.

    Article  Google Scholar 

  • Makkus RC, Hemmes K, de Wit JHW. A comparative study of NiO(Li), LiFeO2 and LiCoO2 porous cathode for molten carbonate fuel cells. J Electrochem Soc. 1994;141:3429–35.

    Article  Google Scholar 

  • Maurin I, Barboux P, Lassailly Y, Boilot JP. La(Sr, Pb)MnO3 thin films through solution techniques. Chem Mater. 1998;10:1727–32.

    Article  Google Scholar 

  • Mauritz KA. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 1. Infrared spectroscopic studies. Macromolecules. 1989;22:1730–4.

    Article  Google Scholar 

  • Mauritz KA. Organic–inorganic hybrid materials: perfluorinated ionomers as sol–gel polymerization templates for inorganic alkoxides. Mater Sci Eng. 1998;C6:121–33.

    Article  Google Scholar 

  • Mauritz KA, Payne JT. [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol–gel processes for tetraethylorthosilicate. J Membr Sci. 2000;168:39–51.

    Article  Google Scholar 

  • Mauritz KA, Stefanithis ID, Davis SV, Scheetz RW, Pope RK, Wilkes GL, Huang HH. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. J Appl Polym Sci. 1995;55:181–90.

    Article  Google Scholar 

  • Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993;76(3):563–88.

    Article  Google Scholar 

  • Mosdale R, Gebel G, Pineri M. Water profile determination in a running proton exchange membrane fuel cell using small-angle neutron scattering. J Membr Sci. 1996;118:269–77.

    Article  Google Scholar 

  • Motupally S, Becker AJ, Weidner JW. Diffusion of water in Nafion 115 membranes. J Electrochem Soc. 2000;147(9):3171–7.

    Article  Google Scholar 

  • Murai M, Takazawa K, Soejima K, Sotouchi H. Deformation mechanism of porous nickel oxide in molten Li/K carbonates. J Electrochem Soc. 1996;143:2481–6.

    Article  Google Scholar 

  • Nagai M, Kobayashi K, Nakajima Y. Inorganic–organic composite protonic conductors comprising silicophosphate glass and ion-exchange resin. Solid State Ion. 2000;136–137:249–54.

    Article  Google Scholar 

  • Nogami M, Miyamura K, Abe Y. Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 Glasses. J Electrochem Soc. 1997;144(6):2175–8.

    Article  Google Scholar 

  • Nogami M, Nagao R, Cong W, Abe Y. Role of water on fast proton conduction in sol–gel glasses. J Sol–Gel Sci Technol. 1998;13:933–6.

    Article  Google Scholar 

  • Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T. Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta. 1998;43(24):3741–7.

    Article  Google Scholar 

  • Okubo T, Nagamoto H. Low temperature preparation of nanostructured zirconia and YSZ by sol–gel processing. J Mater Sci. 1995;30:749–57.

    Article  Google Scholar 

  • Okubo T, Takahashi T, Sadakata M, Nagamoto H. Crack-free porous YSZ membrane via controlled synthesis of zirconia sol. J Membr Sci. 1996;118:151–7.

    Article  Google Scholar 

  • Palinko I, Torok B, Surya Prakash GK, Olah GA. Surface characterization of variously treated Nafion-H, Nafion-H supported on silica and Nafion-H silica nanocomposite catalysts by infrared microscopy. Appl Catal A: Gen. 1998;174:147–53.

    Article  Google Scholar 

  • Schmidt H, Wolter H. Organically modified ceramics and their applications. J Non-Cryst Solids. 1990;121:428–35.

    Article  Google Scholar 

  • Schouler EJL, Meshabi M, Vitter G. In situ study of the sintering process of yttria stabilized zirconia by impedance spectroscopy. Solid State Ion. 1983;9–10:989–96.

    Article  Google Scholar 

  • Shao PL, Mauritz KA, Moore RB. [Perfluorosulfonate ionomer]/[mixed inorganic oxide] nanocomposites via polymer-in situ sol–gel chemistry. Chem Mater. 1995;7:192–200.

    Article  Google Scholar 

  • Shao PL, Mauritz KA, Moore RB. [Perfluorosulfonate ionomer]/[SiO2–TiO2] nanocomposites via polymer-in situ sol–gel chemistry: sequential alkoxide procedure. J Polym Sci: Part B: Polym Phys. 1996;34:873–82.

    Article  Google Scholar 

  • Stefanithis ID, Mauritz KA. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 3. Thermal analysis studies. Macromolecules. 1990;23:2397–402.

    Article  Google Scholar 

  • Sun Q, Farneth WE, Harmer MA. Dimerization of α-methylstyrene (AMS) catalyzed by sulfonic acid resins: a quantitative kinetic study. J Catal. 1996;164:62–9.

    Article  Google Scholar 

  • Takeda Y, Sakadi Y, Ichikawa T, Imanishi N, Yamamoto O, Mori M, Mori N, Abe T. Stability of La1–x A x MnO3–z (A = Ca, Sr) as cathode materials for solid oxide fuel cells. Solid State Ion. 1994;72:257–64.

    Article  Google Scholar 

  • Thampan T, Malhotra S, Tang H, Datta R. Modeling of conductive transport in proton-exchange membranes for fuel cells. J Electrochem Soc. 2000;147(9):3242–50.

    Article  Google Scholar 

  • Verkerk MJ, Middelhuis BJ, Burgraaf AJ. Effect of grain boundaries on the conductivity of high-purity ZrO2–Y2O3 ceramics. Solid State Ion. 1982;6:159–70.

    Article  Google Scholar 

  • Wakizoe M, Velev OA, Srinivasan S. Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochim Acta. 1995;40:335–44.

    Article  Google Scholar 

  • Watkins ID, Tulloch GE, Maine T, Spiccia L, McFarlane DR, Woolfrey JL. Electric windows: a breakthrough in photovoltaics. In: Klein LC, Pope EJA, Sakka S, Woolfrey J, editors. Ceramic transactions 81: sol–gel processing of advanced materials. Westerville: American Ceramic Society; 1998. p. 223–8.

    Google Scholar 

  • Wen TL, Hebert V, Vilminot S, Bernier C. Preparation of nanosized yttria-stabilized zirconia powders and their characterization. J Mater Sci. 1991;26:3787–91.

    Article  Google Scholar 

  • Xia X, Shen LL, Guo ZP, Liu HK, Walter G. Nanocrystalline α-Ni(OH)2 prepared by ultrasonic precipitation. J Nanosci Nanotechnol. 2002;2:45–6.

    Article  Google Scholar 

  • Yeager HL. Transport properties of perfluorosulfonate polymer membranes. In: Eisenberg A, Yeager HL, editors. Perfluorinated ionomer membranes, ACS symposium series, vol. 180. Washington, DC: American Chemical Society; 1982. p. 41–63.

    Chapter  Google Scholar 

  • Yuh C, Johnsen R, Farooque M, Maru H. Status of carbonate fuel cell materials. J Power Sources. 1995;56:1–6.

    Article  Google Scholar 

  • Zoppi RA, Nunes SP. Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol–gel reaction from solution. J Electroanal Chem. 1998;445:39–45.

    Article  Google Scholar 

  • Zoppi RA, Yoshida IVP, Nunes SP. Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol–gel reaction from solution: morphology and thermal analysis. Polymer. 1997;39(6–7):1309–15.

    Google Scholar 

Download references

Acknowledgments

The following coworkers are thanked for their many contributions to the experimental work: Josh Finch, Lawrence Tache, and Mathieu Bervas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Klein, L.C., Aparicio, M., Damay, F. (2016). Sol–Gel Processing for Battery and Fuel Cell Applications. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics