Skip to main content

Active Sol-Gel Materials, Fluorescence Spectra, and Lifetimes

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Optical spectroscopy techniques are crucial tool for the assessment of sol-gel-derived materials, structures, and devices of interest in several high-tech and environmental application areas, the major one concerning photonics devices. Sol-gel materials are known since long time as a convenient host for rare earths and luminescent species and have been widely used for the fabrication of photonic confined structures. Their exploitation covers a range of application possibilities and system performance that are not solely ICT oriented but also concern lighting, laser, sensing, energy, environment, and health. The aim of the present paper is to highlight the application of the spectroscopic techniques to the characterization of active sol-gel materials and to present a brief overview of the efforts and progresses made in the area. After a brief summary of the fundamentals of the photoluminescence properties and of the measurement techniques, some specific arguments are discussed. The effect of oxydril group on the luminescence quenching in rare-earth-doped materials is discussed paying attention to the matrix solubility and energy-transfer mechanics. At this regard, the upconversion dynamics in erbium-activated systems is exhaustively presented. The role of europium as a structural probe and the spectroscopic techniques of site-selection spectroscopy, crucial in the assessment of sol-gel materials, are discussed looking at several experimental results. 1-D microcavities are considered as well as the effect of the presence of the cavity on the emission features of the sample and in particular on the multimodal laser action. Sol-gel technology is largely employed to develop glass-ceramics that constitute a class of nanocomposite materials which offer specific characteristics of capital importance in photonics. As tutorial examples, we mention two binary systems that have been largely investigated during the last 10 years, i.e., SiO2–SnO2 and SiO2–HfO2 glass-ceramics waveguides activated by rare-earth ions. Finally, the paragraph of this chapter is devoted to the luminescence spectroscopy in rare-earth-activated micro- and nanospheres where whispering gallery modes microresonators and monodisperse colloidal spheres are deeply discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alferness RC, Kogelnik H, Wood TH. The evolution of optical systems: optics everywhere. Bell Labs Technical J. 2000;5(January–March):188–202.

    Google Scholar 

  • Almeida RM, Vasconcelos HC, Gonçalves MC, Santos LF. XPS and NEXAFS studies of rare-earth doped amorphous sol- gel films. J Non-Cryst Solids. 1998;232 & 234:65–71.

    Article  Google Scholar 

  • Almeida RM. Sol-gel planar waveguides for integrated optics. J Non-Cryst Solids. 1999;259:176–81.

    Article  Google Scholar 

  • Almeida RM, Du XM, Barbier D, Orignac X. Er3+-doped multicomponent silicate glass planar waveguides prepared by sol-gel processing. J Sol-Gel Sci Tech. 1999;14:209–16.

    Article  Google Scholar 

  • Almeida RM, Morais PJ, Marques AC. Planar waveguides for integrated optics prepared by sol-gel methods. Phil Mag B. 2002;82:707–19.

    Google Scholar 

  • Almeida RM, Portal S. Photonic band gap structures by sol-gel processing. Curr Opin Solid State Mater Sci. 2003;7:151–7.

    Article  Google Scholar 

  • Almeida RM, Rodrigues AS. Photonic bandgap materials and structures by Sol-Gel processing. J Non-Cryst Solids. 2003;326 & 327:405–9.

    Article  Google Scholar 

  • Arai K, Namikawa H, Kumata K, Honda T, Ishii Y, Handa T. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J Appl Phys. 1986;59:3430–6.

    Article  Google Scholar 

  • Armellini C, Ferrari M, Montagna M, Pucker G, Bernard C, Monteil A. Terbium(III) doped silica-xerogels: effect of aluminium(III) co-doping. J Non-Cryst Solids. 1999;245:115–21.

    Article  Google Scholar 

  • Auzel F. Upconversion processes in coupled ion systems. J Lumin. 1990;45:341–5.

    Article  Google Scholar 

  • Auzel F, Goldner P. Towards rare-earth clustering control in doped glasses. Opt Mater. 2001;16:93–103.

    Article  Google Scholar 

  • Bhaktha SNB, Beclin F, Bouazaoui M, Capoen B, Chiasera A, Ferrari M, Kinowski C, Righini GC, Robbe O, Turrell S. Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Appl Phys Lett. 2008;93:211904/1–3.

    Article  Google Scholar 

  • Bahtat A, Bouazaoui M, Bahtat M, Garapon C, Jacquier B, Mugnier J. Up-conversion fluorescence spectroscopy in Er3+: TiO2 planar waveguides prepared by a sol-gel process. J Non-Cryst Solids. 1996;202:16–22.

    Article  Google Scholar 

  • Becker PC, Olsson NA, Simpson JR. Erbium-doped fiber amplifiers-fundamentals and technology. San Diego: Academic Press; 1999.

    Google Scholar 

  • Bellessa J, Rabaste S, Plenet JC, Dumas J, Mugnier J, Marty O. Eu3+-doped microcavities fabricated by sol–gel process. Appl Phys Lett. 2001;79:2142–4.

    Article  Google Scholar 

  • Benatsou M, Capoen B, Bouazaoui M, Tchana W, Vilcot JP. Preparation and characterization of sol-gel derived Er3+: Al2O3-SiO2 planar waveguides. Appl Phys Lett. 1997;71:428–30.

    Article  Google Scholar 

  • Berger V. From photonic band gaps to refractive index engineering. Opt Mater. 1999;11:131–42.

    Article  Google Scholar 

  • Biswas A, Acharya HN, Das BN. Nd-doped silica glasses by sol-gel method: effect of aluminium co-doping. Indian J Pure Appl Phys. 1994;32:358–60.

    Google Scholar 

  • Blanco E, Esquivias L, Litrán R, Piñero M, del-Solar MR, de la Rosa-Fox N (1999) Sonogel and derived materials. Appl Organometal Chem. 13:399–418

    Google Scholar 

  • Blixt P, Nilsson J, Carlnäs T, Jaskorzynska B. Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling. IEEE Transact Photon Technol Lett. 1991;3:996–8.

    Article  Google Scholar 

  • Bouajaj A, Ferrari M, Montagna M, Moser E, Piazza A, Campostrini R, Carturan G. Optical spectroscopy of Eu3+-doped silica gels. Phil Mag B. 1995a;71:633–40.

    Article  Google Scholar 

  • Bouajaj A, Monteil A, Ferrari M, Montagna M. Optical energy transfer in rare earth doped silica gels. Radiat Eff Defects Solids. 1995b;135:247–51.

    Article  Google Scholar 

  • Bouajaj A, Ferrari M, Montagna M. Crystallization of silica xerogels: a study by Raman and fluorescence spectroscopy. J Sol-Gel Sci Technol. 1997;8:391–5.

    Google Scholar 

  • Boulon G. Luminescence in glassy and glass ceramic materials. Mater Chem Phys. 1987;16:301–47.

    Article  Google Scholar 

  • Brinker CJ. Sol-Gel science: the physics and chemistry of Sol-gel processing. Brinker CJ, Scherer GW, editors. Boston: Academic Press Inc; 1990.

    Google Scholar 

  • Brocklesby WS. High-resolution spectroscopy of ions in optical fibers. Annu Rev Mater Sci. 1993;23:193–221.

    Article  Google Scholar 

  • Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O. Luminescence of Eu3+ ions durino thermal densification of SiO2 gel. J Mater Res. 1992;7:745–53.

    Article  Google Scholar 

  • Carlos LD, Sá Ferreira RA, De Zea Bermudez V, Ribeiro SJL. Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Funct Mater. 2001;11:111–5.

    Article  Google Scholar 

  • Chiappini A, Armellini C, Bhaktha SNB, Chiasera A, Ferrari M, Jestin Y, Mattarelli M, Montagna M, Moser E, Nunzi CG, Pelli S, Righini GC, Sglavo VM. Fabrication and optical assessment of sol-gel–derived photonic bandgap dielectric structures. SPIE Proc. 2006;6182:454–63.

    Google Scholar 

  • Chiappini A, Chiasera A, Berneschi S, Armellini C, Carpentiero A, Mazzola M, Moser E, Varas S, Righini GC, Ferrari M. Sol–gel-derived photonic structures: fabrication, assessment, and application. J Sol-Gel Sci Technol. 2011;60:408–25.

    Article  Google Scholar 

  • Chiasera A, Montagna M, Rolli R, Ronchin S, Pelli S, Righini GC, Gonçalves RR, Messaddeq Y, Ribeiro SJL, Armellini C, Ferrari M, Zampedri L. Er3+/Yb3+ co-activated silica-alumina monolithic xerogels. J Sol-Gel Sci Tech. 2003;26:943–6.

    Article  Google Scholar 

  • Chiasera A. Fabrication and characterization of optical planar waveguides activated by erbium ions for 1.5 μm applications. PhD thesis, Trento University, Italy; 2003.

    Google Scholar 

  • Chiasera A, Alombert-Goget G, Ferrari M, Berneschi S, Pelli S, Boulard B, Duverger AC. Rare earth activated glass-ceramic in planar format. Opt Eng. 2011;50:071105 .1/10

    Article  Google Scholar 

  • Chiasera A, Jasieniak J, Normani S, Valligatla S, Lukowiak A, Taccheo S, Narayana RD, Righini GC, Marciniak M, Martucci A, Ferrari M. Hybrid 1-D dielectric microcavity: Fabrication and spectroscopic assessment of glass-based sub-wavelength structures. Ceram Int. 2015;41:7429–33.

    Article  Google Scholar 

  • Cordoncillo E, Guaita FJ, Escribano P, Philippe C, Viana B, Sanchez C. Blue emitting hybrid organic-inorganic materials. Opt Mater. 2001;18:309–20.

    Article  Google Scholar 

  • Costa VC, Lochhead MJ, Bray KL. Fluorescence line-narrowing study of Eu3+-doped sol-gel silica: effect of modifying cations on the clustering of Eu3+. Chem Mater. 1996;8:783–90.

    Article  Google Scholar 

  • Dejneka M, Snitzer E, Riman RE. Spectroscopic characterization of Eu3+-doped inorganic and alkoxide sol-gel derived fluorozirconate glass and zirconium fluoride gels. J Non-Cryst Solids. 1996;202:23–34.

    Article  Google Scholar 

  • Demtröder W. Laser spectroscopy, basic concepts and instrumentation. Berlin: Springer; 1996.

    Google Scholar 

  • Desurvire E, Sulhoff JW, Zyskind JL, Simpson JR. Study of spectral dependence of gain saturation and effect of inhomogeneous broadening in erbium-doped aluminosilicate fiber amplifiers. IEEE Photon Technol Lett. 1990;2:653–5.

    Article  Google Scholar 

  • Desurvire E. Erbium-doped fiber amplifiers : principles and applications. New York: Wiley; 1995.

    Google Scholar 

  • Devlin K, O’Kelly B, Tang ZR, McDonagh C, McGilp JF. A structural study of the sol-gel process by optical fluorescence and decay time spectroscopy. J Non-Cryst Solids. 1991;135:8–14.

    Article  Google Scholar 

  • Di Bartolo B. Optical Interaction in Solids. New York: Wiley; 1967.

    Google Scholar 

  • Dutton HJR. Understanding optical communications. Research Triangle Park, IBM corporation; 1998.

    Google Scholar 

  • Duverger C, Turrell S, Bouazaoui M, Tonelli F, Montagna M, Ferrari M. Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterization by waveguide Raman and luminescence spectroscopies. Phil Mag B. 1998;77:363–72.

    Article  Google Scholar 

  • Duverger C, Montagna M, Rolli R, Ronchin S, Zampedri L, Fossi M, Pelli S, Righini GC, Monteil A, Armellini C, Ferrari M. Erbium-activated silica xerogel: spectroscopic and optical properties. J Non-Cryst Solids. 2001;280:261–8.

    Article  Google Scholar 

  • Ebendorff-Heidepriem H, Ehrt D. Optical spectroscopy of rare earth ions in glasses. Glass Tech Ber Glass Sci Technol. 1998;71:289–99.

    Google Scholar 

  • Egger P, Hulliger J. Optical materials for short wavelength generation. Coord Chem Rev. 1999;183:101–15.

    Article  Google Scholar 

  • Fardad MA, Yeatman EM, Dawnay EJC, Green M, Horowitz F. Effects of H2O on structure of acid-catalysed SiO2 sol-gel films. J Non-Cryst Solids. 1995;183:260–7.

    Article  Google Scholar 

  • Federighi M, Massarek I, Trwoga PF. Optical amplification in thin optical waveguides with high Er concentration. IEEE Photon Technol Lett. 1993;5:227–9.

    Article  Google Scholar 

  • Feng X, Tanabe S, Hanada T. Spectroscopic properties of erbium-doped ultraphosphate glasses for 1.5 μm amplification. J Appl Phys. 2001;89:3560–7.

    Article  Google Scholar 

  • Feofilov SP, Kulinkin AB, Kutsenko AB, Zakharchenya RI. Selective laser spectroscopy of RE3+ and Mn4+ in sol-gel technique produced Al2O3. J Lumin. 1998;76&77:217–20.

    Article  Google Scholar 

  • Ferrari M, Campostrini R, Caruran G, Montagna M. Spectroscopy of trivalent europium in gel-derived silica glasses. Phil. Mag. B. 1992;65:251–60.

    Article  Google Scholar 

  • Ferrari M, Gonella F, Montagna M, Tosello C. Waveguide Raman spectroscopy as a tool for the detection of nanometric metallic particles in glasses. J Raman Spectrosc. 1996;27:793–7.

    Article  Google Scholar 

  • Ferrari M, Righini GC. Glass-ceramic materials for guided-wave optics. Int J Appl Glas Sci. 2015;6:240–8.

    Article  Google Scholar 

  • Forastiere MA, Pelli S, Righini GC, Guglielmi M, Martucci A, Ahmad MM, McCarthy O, Yeatman E, Vannucci A. Strip-loaded sol-gel waveguides: design and fabrication. Fiber Integr Opt. 2001;20:29–43.

    Article  Google Scholar 

  • Giles CR, Desurvire E. Modeling erbium-doped fiber amplifiers. J Lightwave Technol. 1991;9:271–83.

    Article  Google Scholar 

  • Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SJL, Messaddeq Y. Sol-gel Er-doped SiO2 – HfO2 planar waveguides: A viable system for 1.5 μm application. Appl Phys Lett. 2002;81:28–30.

    Article  Google Scholar 

  • Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Chiasera A, Montagna M, Righini GC, Pelli S, Ribeiro SJL, Messaddeq Y. Infrared-to-visible CW frequency upconversion in erbium activated silica – hafnia waveguides prepared by sol – gel route. J Non-Cryst Solids. 2003;322:306–10.

    Article  Google Scholar 

  • Green WH, Le KP, Grey J, Au TT, Sailor MJ. White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions. Science. 1997;276:1826–8.

    Article  Google Scholar 

  • Harreld JH, Ebina T, Tsubo N, Stucky G. Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions. J Non-Cryst Solids. 2002;298:241–51.

    Article  Google Scholar 

  • Hazenkamp MF, Blasse G. Rare-earth ions adsorbed onto porous glass: luminescence as a characterizing tool. Chem Mater. 1990;2:105–10.

    Article  Google Scholar 

  • Heber J, Hellwege KH. Fluorescence lifetimes an multiphonon relaxation in hydrated salts of Eu and Tb. In: Crosswhite HM, Moos HW, editors. Optical properties of ions in crystals. New York: Interscience Publishers; 1969. p. 457–65.

    Google Scholar 

  • Hehlen MP, Cockroft NJ, Gosnell TR. Spectroscopic properties of Er3+ − and Yb3+ − doped soda-lime silicate and aluminosilicate glasses. Phys Rev B. 1997;59:9302–18.

    Article  Google Scholar 

  • Horrocks Jr WDW, Sudnick DR. Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc Chem Res. 1981;14:384–92.

    Article  Google Scholar 

  • Houde-Walter SN, Peters PM, Stebbins JF, Zeng Q. Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses. J Non-Cryst Solids. 2001;286:118–31.

    Article  Google Scholar 

  • Van den Hoven GN, Snoeks E, Polman A, van Dam C, van Uffelen JWM, Smit MK. Upconversion in Er-implanted Al2O3 waveguides. J Appl Phys. 1996;79:1258–66.

    Article  Google Scholar 

  • Huang W, Sym RRA, Yeatman EM, Ahmad MM, Clapp TV, Ojha SM. Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier. IEEE Photon Technol Lett. 2002;14:959–61.

    Article  Google Scholar 

  • Huber DL. Statistical model for stretched exponential relation in macroscopic systems. Phys Rev B. 1985;31:6070–1.

    Article  Google Scholar 

  • Huber DL. Stretched exponential relaxation and optical phenomena in glasses. Mol Cryst Liq Cryst. 1996;291:17–21.

    Article  Google Scholar 

  • Hüfner S. Optical spectra of transparent rare-earth compounds. New York: Academic Press; 1978.

    Google Scholar 

  • Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence. J Chem Phys. 1965;43:1978–89.

    Article  Google Scholar 

  • Ishizaka T, Kurokawa Y, Makino T, Segawa Y. Optical properties of rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films prepared by the sol-gel method. Opt Mater. 2001;15:293–9.

    Article  Google Scholar 

  • Ishizaka T, Nozaki R, Kurokawa Y. Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence. J Phys Chem Solids. 2002;63:613–7.

    Article  Google Scholar 

  • Iwasaki M, Yasumori A, Kawazoe H, Yamane M. Thermal properties of gel-derived materials of Al2O3- SiO2 system. J Non-Cryst Solids. 1990;121:147–52.

    Article  Google Scholar 

  • Jestin Y, Afify N, Armellini C, Berneschi S, Bhaktha SNB, Boulard B, Chiappini A, Chiasera A, Dalba G, Duverger C, Ferrari M, Goyes Lopez CE, Mattarelli M, Montagna M, Moser E, Nunzi Conti G, Pelli S, Righini GC, Rocca F. Er3+-activated silica-hafnia glass-ceramics planar waveguides. Proc SPIE. 2006;6183:61831W/1–8.

    Google Scholar 

  • Jin J, Sakida S, Yoko T, Nogami M. The local structure of Sm-doped aluminosilicate glasses prepared by sol-gel method. J Non-Cryst Solids. 2000;262:183–90.

    Article  Google Scholar 

  • Joubert MF. Photon avalanche upconversion in rare earth laser materials. Opt Mater. 1999;11:181–203.

    Article  Google Scholar 

  • Kaiser H. Handbuch der spectroscopie. Hirzel Leipzig, vol. 3 (1905) and vol. 4 (1908).

    Google Scholar 

  • Kasha M. Characterization of electronic transitions in complex molecules. Discuss Faraday Soc. 1950;9:14–9.

    Article  Google Scholar 

  • Kenyon AJ. Recent developments in rare-earth doped materials for optoelectronics. Prog Quantum Electron. 2002;26:225–84.

    Article  Google Scholar 

  • Kinowski C, Bouazaoui M, Bechara R, Hench LL, Nedelec JM, Turrell S. Kinetics of densification of porous silica gels: a structural and textural study. J Non-Cryst Solids. 2001;291:143–52.

    Article  Google Scholar 

  • Kitamura T, Takahashi Y, Yamanaka T, Uchida K. Luminescence associated with the molecular aggregation of hydrocarbons doped in amorphous silica glasses. J Lumin. 1991;48&49:373–6.

    Article  Google Scholar 

  • Klein L. Sol-gel optics: processing amd applications. Klein LC, editor. Kluwer Academic Publishers; 1994.

    Google Scholar 

  • Kropp JL, Windsor MW. Luminescence and energy transfer in solutions of rare-earth complexes. I. Enhancement of fluorescence by deuterium substitution. J Chem Phys. 1965;42:1599–608.

    Article  Google Scholar 

  • Kurokawa Y, Kobayashi Y, Nakata S. Preparation of transparent alumina films by the sol-gel process and its application to photo-functional films. Heterog Chem Rev. 1994;1:309–28.

    Google Scholar 

  • Kurokawa Y, Ishizaka T, Ikoma T, Tero-Kubota S. Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method. Chem Phys Lett. 1998;287:737–41.

    Article  Google Scholar 

  • Lakeman CDE, Payne DA. Sol-gel processing of electrical and magnetic ceramics. Mater Chem Phys. 1994;38:305–24.

    Article  Google Scholar 

  • Levy D, Reisfeld R, Avnir D. Fluorescence of Europium(III) trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem Phys Lett. 1984;109:593–7.

    Article  Google Scholar 

  • Levy D, Esquivias L. Sol-gel processing of optical and electrooptical materials. Adv Mater. 1995;7:120–9.

    Article  Google Scholar 

  • Livage J. Sol-gel processes. Curr Opin Solid State Mater Sci. 1997;2:132–8.

    Article  Google Scholar 

  • Lochhead MJ, Bray KL. Time-resolved fluorescence line narrowing and lifetime studies of gel derived Eu2O3-Al2O3-SiO2 systems. SPIE. 1994a;2288:688–99.

    Google Scholar 

  • Lochhead MJ, Wamsley PR, Bray KL. Luminescence spectroscopy of Europium(III) nitrate, chloride, and perchlorate in mixed ethanol-water solutions. Inorg Chem. 1994;33:2000–3.

    Article  Google Scholar 

  • Lochhead MJ, Bray KL. Spectroscopic characterization of doped sol-gel silica gels and glasses: evidence of inner-sphere complexation of europium(III). J Non-Cryst Solids. 1994b;170:143–5.

    Article  Google Scholar 

  • Lochhead MJ, Bray KL. Rare-earth clustering and aluminium codoping in sol-gel silica: investigation using europium(III) fluorescence spectroscopy. Chem Mater. 1995;7:572–7.

    Article  Google Scholar 

  • Luyer CL, Lou L, Bovier C, Plenet JC, Dumas JG, Mugnier J. A thick sol-gel inorganic layer for optical planar waveguide applications. Opt Mater. 2001;18:211–7.

    Article  Google Scholar 

  • Maciel GS, Biswas A, Kapoor R, Prasad PN. Blue cooperative upconversion in Yb3+ −doped multicomponent sol-gel-processed silica glass for three-dimensional display. Appl Phys Lett. 2000a;76:1978–80.

    Article  Google Scholar 

  • Maciel GS, Biswas A, Prasad PN. Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol gel processed multi-component silica glass. Opt Commun. 2000b;178:65–9.

    Article  Google Scholar 

  • Mackenzie JD. Glasses from melts and glasses from gels, a comparison. J Non-Cryst Solids. 1982;48:1–10.

    Article  Google Scholar 

  • Marques AC, Almeida RM, Chiasera A, Ferrari M. Reversible photoluminescence quenching in Er3+-doped silica-titania planar waveguides prepared by sol-gel. J Non-Cryst Solids. 2003;322:272–7.

    Article  Google Scholar 

  • McCarthy O, Yeatman E. Selective-area doping of porous solgel films for integrated optics. Opt Lett. 1997;22:1864–6.

    Article  Google Scholar 

  • Mendes SB, Saavedra SS. On probing molecular monolayers: a spectroscopic optical waveguide approach of ultra-sensitivity. Opt Express. 1999;4:449–56.

    Article  Google Scholar 

  • Meneghetti M, Signorini R, Zerbetto M, Bozio R, Maggini M, Scorrano G, Prato M, Brusatin G, Menegazzo E, Guglielmi M. Sol-gel materials embedding fullerene derivatives for optical limiting. Synth Met. 1997;86:2353–4.

    Article  Google Scholar 

  • Menzel R. Photonics linear and nonlinear interactions of laser light and matter. Berlin: Springer; 2001.

    Google Scholar 

  • Messias DN, Vermelho MVD, Gouveia-Neto AS, Aitchison JS. All optical integrated upconversion fluorescence-based point temperature sensing system using Er3+-doped silica-on-silicon waveguides. Rev Sci Instrum. 2002;73:476–9.

    Article  Google Scholar 

  • Minardi AP, Marty O, Bovier C, Garapon C, Mugnier J. Optical and structural analysis of Eu3+-doped alumina planar waveguides elaborated by the sol-gel process. Opt Mater. 2001;16:9–13.

    Article  Google Scholar 

  • Miniscalco WJ. Erbium-doped glasses for fiber amplifiers at 1500 nm. J Lightwave Technol. 1991;9:234–50.

    Article  Google Scholar 

  • Myslinski P, Nguyen D, Chrostowski J. Effects of concentra-tion on the performance of erbium-doped fiber amplifiers. J Lightwave Technol. 1997;15:112–20.

    Article  Google Scholar 

  • Najafi SI, Touam T, Sara R, Andrews MP, Fardad MA. Sol-gel glass waveguide and grating on silicon. J Lightwave Technol. 1998;16:1640–6.

    Article  Google Scholar 

  • Nieuwpoort WC, Blasse G. Linear crystal-field terms and the 5D07F0 transition of the Eu3+ ion. Solid State Commun. 1966;4:227–9.

    Article  Google Scholar 

  • Nogami M. Sol-gel preparation of SiO2 glasses containing Al2O3 or ZrO2. J Non-Cryst Solids. 1994;178:320–6.

    Article  Google Scholar 

  • Nogami M, Abe Y. Fluorescence properties of Sm2+ ions in silicate glasses. J Appl Phys. 1996a;80:409–14.

    Article  Google Scholar 

  • Nogami M, Abe Y. Properties of sol-gel derived Al2O3-SiO2 glasses using Eu3+ ion fluorescence spectra. J Non-Cryst Solids. 1996b;197:73–8.

    Article  Google Scholar 

  • Nogami M, Abe Y. Fluorescence spectroscopy of silicate glasses co-doped with Sm2+ and Al3+ ions. J Appl Phys. 1997;81:6351–6.

    Article  Google Scholar 

  • Nogami M, Nagakura T, Hayakawa T, Sakai T. Persistent spectral hole burning in Eu3+-doped silicate glasses codoping Al3+ and P5+ ions. Chem Mater. 1998;10:3991–5.

    Article  Google Scholar 

  • Nogami M, Nagakura T, Hayakawa T. Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3-SiO2 glasses. J Lumin. 2000;86:117–23.

    Article  Google Scholar 

  • Nusinsky I, Hardy AA. Analysis of the effect of upconversion on signal amplification in Erbium-Doped Fiber Amplifiers (EDFAs). IEEE J Quant Electr. 2003;39:548–54.

    Article  Google Scholar 

  • Nykolak G, Becker PC, Shmulovich J, Wong YH, DiGiovanni DJ, Bruce AJ. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides. IEEE Photon Technol Lett. 1993;5:1014–6.

    Article  Google Scholar 

  • Ogoshi H, Ichino S, Kurotori K. Broadband optical amplifiers for DWDM systems. Furukawa Rev. 2000;19:17–21.

    Google Scholar 

  • Orignac X, Vasconcelos HC, Du XM, Almeida RM. Influence of solvent concentration on the microstructure of SiO2-TiO2 sol-gel films. J Sol-Gel Sci Technol. 1997;8:243–8.

    Google Scholar 

  • Orignac X, Barbier D, Min Du X, Almeida RM, McCarthy O, Yeatman E. Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Opt Mater. 1999;12:1–18.

    Article  Google Scholar 

  • Pablos-Martín de A, Ristic D, Bhattacharyya S, Höche T, Mather GC, Ramírez MO, Soria S, Ferrari M, Righini GC, Bausá LE, Durán A, Pascual MJ. Effects of Tm3+ addition on the crystallization of LaF3 nanocrystals in oxyfluoride glasses: optical characterization and up-conversion. J Am Ceramic Soc. 2013;96:47–457.

    Article  Google Scholar 

  • Pablos-Martin de A, Ferrari M, Pascual MJ, Righini GC. Glass-ceramics: a class of nanostructured materials for photonics. La Rivista del Nuovo Cimento. 2015;38:311–69.

    Google Scholar 

  • Pasquale FD, Federighi M. Modeling of uniform and pair-in-duced upconversion mechanisms in high-concentration erbium doped silica waveguides. J Lightwave Technol. 1995;13:1858–64.

    Article  Google Scholar 

  • Patra A, Reisfeld R, Minti H. Influence of aluminium oxide on intensities of Sm3+ and Pr3+ spectral transitions in sol-gel glasses. Mater Lett. 1998;37:325–9.

    Article  Google Scholar 

  • Patra A, Gangli D. Study of rehydration process of alumina containing cerium doped silica gels by ultraviolet visible and FTIR spectroscopy. Phys Chem Glasses. 1999;40:248–51.

    Google Scholar 

  • Pellegri N, Dawnay EJC, Yeatman EM. Multilayer SiO2-B2O3-Na2O Films on Si for Optical Applications. J Sol-Gel Sci Technol. 1998;13:783–7.

    Article  Google Scholar 

  • Pelli S, Righini GC. Introduction to integrated optics: characterisation and modelling of optical waveguides. In: Martellucci S, Chester AN, Bertolotti M, editors. Advances in integrated optics. New York: Plenum Press; 1994. p. 1–20.

    Chapter  Google Scholar 

  • Philipsen JL, Bjarklev A. Monte Carlo simulation of homogeneous upconversion in Erbium-doped silica glasses. IEEE J Quantum Electron. 1997;33:845–54.

    Article  Google Scholar 

  • Philipsen JL, Broeng J, Bjarklev A, Helmfrid S, Bremberg D, Jaskorzynska B, Pálsdóttir B. Observation of strongly nonquadratic homogeneous upconversion in Er3+-doped silica fibers and reevaluation of the degree of clustering. IEEE J Quantum Electron. 1999;35:1741–9.

    Article  Google Scholar 

  • Piazza A, Bouajaj A, Ferrari M, Montagna M, Campostrini R, Carturan G. Optical spectroscopy of Eu3+ ion as a tool for the study of dehydration process in silica gels. J Phys IV. 1994;C4:569–72.

    Google Scholar 

  • Pope EJA. Fluorescence behavior of organic dyes, europium, and uranium in sol-gel microspheres. SPIE. 1992;1758:360–71.

    Google Scholar 

  • Porcher P, Caro P. Influence of J-mixing on the phenomenological interpretation of the Eu3+ ion spectroscopic properties. J Lumin. 1980;21:207–16.

    Article  Google Scholar 

  • Pucker G, Parolin S, Moser E, Montagna M, Ferrari M, Del Longo L. Raman and luminescence studies of Tb3+ doped monolithic silica xerogels. Spectrochim Acta A. 1998;54:2133–42.

    Article  Google Scholar 

  • Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev. 1946;69:681.

    Article  Google Scholar 

  • Quimby RS, Miniscalco WJ, Thompson B. Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption. J Appl Phys. 1994;76:4472–8.

    Article  Google Scholar 

  • Rabaste S, Bellessa J, Brioude A, Bovier C, Plenet JC, Brenier R, Marty O, Mugnier J, Dumas J. Sol –gel fabrication of thick multilayers applied to Bragg reflectors and microcavities. Thin Solid Films. 2002;416:242–7.

    Article  Google Scholar 

  • Ramponi R, Osellame R, Marangoni M. Two straightforward methods for the measurement of optical losses in planar waveguides. Rev Sci Instrum. 2002;73:1117–20.

    Article  Google Scholar 

  • Refi J.J. Optical fiber for optical networking. Bell Labs Tech J 1999; January–March: 246-261.

    Google Scholar 

  • Reisfeld R, Jørgensen CK. Optical properties of colorants or luminescent species in sol-gel glasses. Struct Bond. 1992;77:207–56.

    Article  Google Scholar 

  • Reisfeld R, Panczer G, Patra A, Gaft M. Time-resolved spectroscopy of Sm3+ in silica-Al sol-gel glasses. Mater Lett. 1999;38:413–7.

    Article  Google Scholar 

  • Reisfeld R. Prospects of sol-gel technology towards luminescent materials. Opt Mater. 2001;16:1–7.

    Article  Google Scholar 

  • Rigneault H, Monneret S. Modal analysis of spontaneous emission in a planar microcavity. Phys Rev A. 1996;54:2356–68.

    Article  Google Scholar 

  • Righini GC, Arnaud C, Berneschi S, Bettinelli M, Brenci M, Chiasera A, Féron P, Ferrari M, Montagna M, Nunzi-Conti G, Pelli S, Portales H, Siligardi C, Speghini A, Zampedri L. Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses. Opt Mater. 2005;27:1711–7.

    Article  Google Scholar 

  • Righini GC, Dumeige Y, Féron P, Ferrari M, Ristić D, Soria S. Whispering gallery mode microresonators: fundamentals and applications. La Rivista del Nuovo Cimento. 2011;34:435–88.

    Google Scholar 

  • Rocca F, Ferrari M, Kuzmin A, Dal DN, Duverger C, Monti F. EXAFS studies of the local structure of Er3+ ions in silica xerogels co-doped with aluminium. J Non-Cryst Solids. 2001;293–295:112–7.

    Article  Google Scholar 

  • Ryu CK, Choi H, Kim K. Fabrication of highly concentrated Er3+ doped aluminosilicate films via sol-gel processing. Appl Phys Lett. 1995;66:2496–8.

    Article  Google Scholar 

  • Sbetti M, Moser E, Montagna M, Ferrari M, Chaussedent S, Bettinelli M. Homogeneous line width in zinc borate glass activated by Eu3+. J Non-Cryst Solids. 1997;220:217–21.

    Article  Google Scholar 

  • Seco AM, Gonçalves MC, Almeida RM. Densification of hybrid silica-titania sol–gel films studied by ellipsometry and FTIR. Mater Sci Eng B. 2000;76:193–9.

    Article  Google Scholar 

  • Seltzer PM, Huber DL, Hamilton DS, Yen WM, Weber MJ. Anomalous fluorescence linewidth behaviour in Eu3+-doped silicate glass. Phys Rev Lett. 1976;36:813–6.

    Article  Google Scholar 

  • Skrdla PJ, Saavedra SS, Armstrong NR, Mendes SB, Peyghambarian N. Sol-gel based, planar waveguide sensor for water vapor. Anal Chem. 1999;71:1332–7.

    Article  Google Scholar 

  • Slooff LH, de Dood MJA, van Blaaderen A, Polman A. Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films. J Non-Cryst Solids. 2001;296:158–64.

    Article  Google Scholar 

  • Snoeks E, van den Hoven GN, Polman A. Optimization of an Er-doped silica glass optical waveguide amplifier. IEEE J Quantum Electron. 1996;32:1680–4.

    Article  Google Scholar 

  • Stokowski SE, Saroyan RA, Weber MJ. Nd-doped laser glass spectroscopic and physical properties. Lawrence Livermore National Laboratory 1981; Rev. 2, Report M-095.

    Google Scholar 

  • Stone BT, Bray KL. Fluorescence properties of Er3+-doped sol-gel glasses. J Non-Cryst Solids. 1996;197:136–44.

    Article  Google Scholar 

  • Sudo S. Optical fibers amplifiers: materials, devices, and applications. Shoichi S, editor. Boston: Artech House; 1997.

    Google Scholar 

  • Syms RRA, Schneider VM, Huang W, Ahmad MM. High-Δn silica-on-silicon channel waveguides based on sol-gel germanophosphosilicate glass. Electron Lett. 1997;33:1216–7.

    Article  Google Scholar 

  • Syms RRA, Holmes AS, Huang W, Schneider VM, Green M. Development of the SC-RTA process for fabrication of Sol-Gel based silica-on-silicon integrated optic components. J Sol-Gel Sci Technol. 1998;13:509–16.

    Article  Google Scholar 

  • Tanabe S, Hanada T. Local structure and 1.5 μm quantum efficiency of erbium doped glasses for optical amplifiers. J Non-Cryst Solids. 1996;196:101–5.

    Article  Google Scholar 

  • Tanabe S. Optical transitions of rare earth ions for amplifiers: how the local structure works in glass. J Non-Cryst Solids. 1999;259:1–9.

    Article  Google Scholar 

  • Tien PK. Integrated optics and new wave phenomena in optical waveguides. Rev Mod Phys. 1997;49:361–42.

    Article  Google Scholar 

  • Uhlmann DR, Boulton JM, Teowee G. New optical materials by wet chemical processing. J Non-Cryst Solids. 1996;196:26–36.

    Article  Google Scholar 

  • Vallés JA, Lázaro JA, Rebolledo MA. Analysis of competing mechanisms in transitions between excited states in Er-doped integrated Waveguides. IEEE J Quantum Electron. 2002;38:318–23.

    Article  Google Scholar 

  • Van Tran TT, Turrell S, Capoen B, Vinh LQ, Cristini-Robbe O, Bouazaoui M, d’Acapito F, Ferrari M, Ristic D, Lukowiak A, Almeida R, Santos L, Kinowski C. Erbium-doped tin-silicate sol-gel-derived glass-ceramic thin films: Effect of environment segregation on the Er3+ emission. Sci Adv Mater. 2015;7:301–8.

    Article  Google Scholar 

  • Vossen DLJ, de Dood MJA, van Dillen T, Zijlstra T, van der Drift E, Polman A, van Blaaderen A. Novel method for solution growth of thin silica films from tetraethoxysilane. Adv Mater. 2000;12:1434–7.

    Article  Google Scholar 

  • Wang J, Brocklesby WS, Lincoln JR, Townsend JE, Payne DN. Local structures of rare-earth ions in glasses: the ‘crystal-chemistry’ approach. J Non-Cryst Solids. 1993;163:261–7.

    Article  Google Scholar 

  • Warland C. Gőrller and Binnemans K. Spectral intensities of f-f transitions. in Handbook on the physics and chemistry of rare earths Vol. 25, Edts. K.A. Gschneidner Jr and LeRoy Eyring, Amsterdam: Elsevier, 1998.

    Google Scholar 

  • Weber MJ. For an extensive review, see Laser spectroscopy of solids. Yen MW, Selzer PM, Berlin: Springer; 1981

    Google Scholar 

  • Weber MJ. Fluorescence and glass lasers. J Non-Cryst Solids. 1982;47:117–34.

    Article  Google Scholar 

  • Weber MJ. Science and technology of laser glass. J Non-Cryst Solids. 1990;123:208–22.

    Article  Google Scholar 

  • Xiang Q, Zhou Y, Ooi BS, Chan YC, Kam CH. Optical properties of Er3+-doped SiO2-GeO2-Al2O3 planar waveguide fabricated by sol-gel processes. Thin Solid Films. 2000;370:243–7.

    Article  Google Scholar 

  • Xu W, Dai S, Toth LM, Del Cul GD, Peterson JR. Green upconversion emission from Er3+ ion doped into sol-gel silica glasses under red light (647.1 nm) excitation. J Phys Chem. 1995;99:4447–50.

    Article  Google Scholar 

  • Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58:2059–62.

    Article  Google Scholar 

  • Yang L, Saavedra SS, Armstrong NR, Hayes J. Fabrication and characterization of low-loss, sol-gel planar waveguides. Anal Chem. 1994;66:1254–63.

    Article  Google Scholar 

  • Yeatman EM, Pita K, Ahmad MM, Vannucci A, Fiorello A. Strip-loaded high-confinement waveguides for photonic applications. J Sol-Gel Sci Technol. 1998;13:517–21.

    Article  Google Scholar 

  • Yeatman EM, Ahmad MM, McCarthy O, Vannucci A, Gastaldo P, Barbier D, Mongardien D, Moronvalle C. Optical gain in Er-doped SiO2-TiO2 waveguides fabricated by the sol-gel technique. Opt Commun. 1999;164:19–25.

    Article  Google Scholar 

  • Yeatman EM, Ahmad MM, McCarthy O, Martucci A, Guglielmi M. Sol-gel fabrication of rare-earth doped photonic components. J Sol-Gel Sci Technol. 2000;19:231–6.

    Article  Google Scholar 

  • Yen WM, Brundage RT. Fluorescence line narrowing in inorganic glasses: linewidth measurements. J Lumin. 1987;36:209–20.

    Article  Google Scholar 

  • Zampedri L, Ferrari M, Armellini C, Visintainer F, Tosello C, Ronchin S, Rolli R, Montagna M, Chiasera A, Pelli S, Righini GC, Monteil A, Duverger C, Gonçalves RR. Erbium-activated silica-titania planar waveguides. J Sol-Gel Sci Technol. 2003;26:1033–6.

    Article  Google Scholar 

  • Zemon S, Lambert G, Andrew LJ, Miniscalco WJ, Hall BT, Wei T, Folweiler RC. Characterization of Er3+-doped glasses by fluorescence line narrowing. J Appl Phys. 1991;69:6799–811.

    Article  Google Scholar 

  • Zhang HX, Kam CH, Zhou Y, Han XQ, Buddhudu S, Lam YL. Visible up-conversion luminescence in Er3+: BaTiO3 nanocrystals. Opt Mater. 2000;15:47–50.

    Article  Google Scholar 

  • Zhou Y, Lam YL, Wang SS, Liu HL, Kam CH, Chan YC (1997) Fluorescence enhancement of Er3+-doped sol-gel glass by aluminium codoping. Appl Phys Lett. 71:587–589

    Google Scholar 

  • Zhu X-l, Lo D. Distributed-feedback sol-gel dye laser tunable in the near ultraviolet. Appl Phys Lett. 2000;77:2647–9.

    Article  Google Scholar 

  • Zhu X-l, Lo D. Sol-gel glass distributed feedback waveguide laser. Appl Phys Lett. 2002;80:917–9.

    Article  Google Scholar 

  • Zschokke J. Optical spectroscopy of glasses. Zschokke J, editor. Dordrecht: Reidel; 1986.

    Google Scholar 

  • Zyskind JL, Desurvire E, Sulhoff JW, DiGiovanni DJ. Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2: SiO2 core. IEEE Photon Technol Lett. 1990;2:869–71.

    Article  Google Scholar 

Download references

Acknowledgment

This research was performed in the framework of the COST MP1401 “Advanced Fibre Laser and Coherent Source as Tools for Society, Manufacturing and Lifescience” (2014–2018), PAS-CNR (2014–2016), and PLANS – Centro Fermi projects. The authors are very grateful to all the colleagues who have collaborated to the research activities, in particular to C. Armellini (IFN-CNR & FBK), S. Berneschi (IFAC-CNR), Bhaktha B.N. (Indian Institute of Technology), B. Boulard (Université du Maine), A. Carpentiero (IFN-CNR), C. Duverger (Université du Maine), A. Martucci (University of Padova), M. Meneghetti (University of Trento), G. Nunzi Conti (IFAC-CNR), S. Pelli (IFAC-CNR), F. Prudenzano (Politecnico di Bari), D. Ristic (Ruder Boskovic Institute), F. Scotognella (Politecnico Milano), Thi Ngoc Lam Tran (IFN-CNR & Ho Chi Minh City University of Technical Education), S. Turrell (University of Lille), A. Vaccari (FBK), S. Varas (IFN-CNR), I. Vasilchenko, D. Zonta (University of Trento and University of Strathclyde and IFN-CNR), and L. Zur (Centro Fermi & IFN-CNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lukowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Lukowiak, A., Chiasera, A., Chiappini, A., Righini, G.C., Ferrari, M. (2016). Active Sol-Gel Materials, Fluorescence Spectra, and Lifetimes. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics