Skip to main content

Viscosity and Spinnability of Gelling Solutions

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Gelling solutions of a certain composition range in the alkoxysilane-water-alcohol systems catalyzed with an acid are spinnable at the viscosity of 10 ~ 100 poise and subject to fiber drawing. In order to understand such behavior of sol–gel solutions, rheological properties of solutions, especially, the viscosity change with time and shear rate, and methods of measurement of viscosity of solutions were reviewed. Measurements of viscosity applied to tetraethoxysilane solutions indicated that both spinnable and nonspinnable solutions increase in viscosity with time in a similar manner and that spinnable solutions are Newtonian in flow behavior in the viscosity range of 10 ~ 100 poise where fibers can be drawn, while nonspinnable solutions are characterized by non-Newtonian, thixotropic flow behavior. On the basis of the abovementioned results of viscosity measurements, together with the analysis of flow behavior and mechanism of hydrolysis-condensation of tetraethoxysilanes, the occurrence of spinnability was related to the linear shape of particles in the solution. Further, the same discussion was found to be valid for solutions designed for drawing of Al2O3, TiO2, ZrO2, and Y-Ba-Cu-O superconducting fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Badgley WJ, Mark H. High molecular weight organic compounds. New York: Interscience; 1949.

    Google Scholar 

  • Brenna U, Carturan G, Sorarù GD. Rheological behavior of solutions affording SiO2 and SiO2/ZrO2 fibers. J Non-Cryst Solids. 1991;124:191–8.

    Article  Google Scholar 

  • Casson N. In: Mill CC, editor. Rheology of disperse systems. London: Pergamon; 1959. p. 84.

    Google Scholar 

  • Chatterjee M, Naskar MM, Chakravorty PK, Ganguli D. Mullite fibre mats by a sol–gel spining technique. J Sol–Gel Sci Technol. 2002;25:169–74.

    Article  Google Scholar 

  • Debsikdar JC. Effect of the nature of the sol–gel transition on the oxide content and microstructure of silica gel. Adv Ceram Mater. 1986;1:93–8.

    Google Scholar 

  • Doi M. Viscoelastic and rheological properties. In: Thomas EL, editor. Materials science and technology, vol. 12, structure and properties of polymers. Weinheim/New York/Basel/Cambridge: VCH; 1993. p. 391–425.

    Google Scholar 

  • Drabarek E, Bartlett JR, Hanby HJM, Woolfrey JL, Muzny CD, Butler BD. Shear-induced restructuring of colloidal silica gels. J Sol–Gel Sci Technol. 2000;19:279–83.

    Article  Google Scholar 

  • Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys j Non-cyst solids 1906;19:289–306.

    Google Scholar 

  • Guizard C, Achddou JC, Larbot A, Cot L. Sol-to-gel transition in reversal micelle microemusions: III. Rheology. 1992; 147–148:681–685.

    Google Scholar 

  • Huggins ML. The viscosity of dilute solutions of long-chain molecules: IV. Dependence on concentration. J Am Chem Soc. 1942;64:2716–8.

    Article  Google Scholar 

  • Kamiya K, Sakka S, Tatemichi Y. Preparation of glass fibre of the ZrO2–SiO2 and Na2O–ZrO2–SiO2 systems from metal alkoxide and their resistance to alkaline solution. J Mater Sci. 1980;15:1765–71.

    Article  Google Scholar 

  • Kamiya K, Yoko T, Sakka S. Preparation of oxide glasses from metal alkoxides by sol–gel method – investigation on the type of the siloxane polymers produced in the course of hydrolysis of Si(OC2H5)4. J Ceram Soc Jpn. 1984;91:242–7.

    Google Scholar 

  • Kamiya K, Taniomoto K, Yoko T. Preparation of TiO2 fibres by hydrolysis and polycondensation of Ti(O–i–C3H7)4. J Mater Sci Lett. 1986;5:402–4.

    Article  Google Scholar 

  • Kanbara C, editor. Experimental study on high polymers. Mechanical properties I. Tokyo: Kyoritsu-Shuppan; 1982.

    Google Scholar 

  • Keysar S, Cohen Y, Shagal S, Slobodisnsky S, Grader GS. Effect of aging on alumina gels rheology and aerogels surface area. J Sol–Gel Sci Technol. 1999;14:131–6.

    Article  Google Scholar 

  • Kozuka H, Kuroki H, Sakka S. Flow characteristics and spinnability of sols prepared from silicon alkoxide solution. J Non-Cryst Solids. 1988;100:226–30.

    Article  Google Scholar 

  • Larbot A, Hours T, Berger P, Charpin J, Cot L. Study of sol–gel transition during hafnium alkoxide hydrolysis. J Non-Cryst Solids. 1992;147–148:85–91.

    Article  Google Scholar 

  • Maki T, Sakka S. Flow properties and fiber formation of alumina sols. J Non-Cryst Solids. 1988;100:303–8.

    Article  Google Scholar 

  • Mizuno T, Phalippou J, Zarzycki J. Evolution of the viscosity of solutions containing metal alkoxides. Glass Technol. 1985;26:39–45.

    Google Scholar 

  • Okamura S, Nakajima A, Onogi S, Kawai H, Nishijima N, Higashimura T, Ise N. Various properties of polymeric materials, Chapter 4. In: Introduction to polymer chemistry. Tokyo: Kagakudonin; 1981.

    Google Scholar 

  • Onogi S. Rheology for chemists. Kyoto: Kagakudonin; 1982.

    Google Scholar 

  • Park YI, Kim CE, Lee HW. Effects of catalyst and solvent on PbTiO3 fibers prepared from triethanolamine complicated titanium isopropoxide. J Sol–Gel Sci Technol. 1999;14:149–62.

    Article  Google Scholar 

  • Rabinovich EM, Kopylov NJ. Rheological behavior of low-surface-area-particulate silica sols in the presence of F ions. In: Mackenzie JD, Ulrich DR, editors. Ultrastructure processing of advanced ceramics. New York: Wiley; 1988. p. 285–93.

    Google Scholar 

  • Sacks MD, Sheu R-S. Rheological properties of silica sol–gel materials. J Non-Cryst Solids. 1987;92:383–96.

    Article  Google Scholar 

  • Sakka S, Kamiya K. The sol–gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. J Non-Cryst Solids. 1982;48:31–6.

    Article  Google Scholar 

  • Sakka S, Kamiya K, Kato T. Viscosity change and spinnability of Si(OC2H5)4–H2O–C2H5OH solutions on hydrolysis. Yogyo-Kyokai-Shi. 1982;90:555–6.

    Article  Google Scholar 

  • Sakka S. Formation of glass and amorphous oxide fibers from solutions. Mater Res Soc Symp Proc. 1984;32:91–9.

    Article  Google Scholar 

  • Sakka S, Kamiya K. Preparation of shaped glasses through sol–gel method. In: Davis RF, Palmour III H, Porter RL, editors. Emergent process methods for the high technology ceramics. New York: Plenum; 1984. p. 83–94.

    Chapter  Google Scholar 

  • Sakka S, Kozuka H. Fiber drawing from silicon alkoxide solutions. Chem Lett. 1987; 16:1763–1766.

    Google Scholar 

  • Sakka S, Kozuka H. Rheology of sols and fiber drawing. J Non-Cryst Solids. 1988;16:142–53.

    Google Scholar 

  • Sakka S, Kozuka H, Umeda T. Fabrication of YBa2Cu3Oy fibers through sol–gel method. J Ceram Soc Jpn. 1988;96:468–70.

    Article  Google Scholar 

  • Sakka S, Yoko T. Fibers from gels. J Non-Cryst Solids. 1992;147&148:394–403.

    Article  Google Scholar 

  • Shin DY, Han S-M. Spinnability and rheological properties of sols derived from Si(OC2H5)4 and Zr(O–nC3H7)7 solutions. J Sol-Gel Sci Technol. 1994;1:267–73.

    Article  Google Scholar 

  • Sowman HG. Alumina–baria–silica ceramic fibers from the sol–gel process. In: Klein LC, editor. Sol–gel technology for thin films, fibers, preforms, electronics and specialty shapes. Park Ridge: Noyes; 1988. p. 162–83.

    Google Scholar 

  • Takahashi K, Tanioka M. Studies on the drawing sphere viscometer. Appl Phys (Japan). 1966;35:786–96.

    Google Scholar 

  • Taneda N, Matsusaki K, Arai T, Mukoyama T, Ikemura M. Properties of silica fibers prepared by sol–gel method. Asahi-Glass Res Rep. 1988;38:309–18.

    Google Scholar 

  • Toyoda M, Hamaji Y, Tomono K. Fabrication of PbTiO3 ceramic fibers by sol–gel processing. J Sol–Gel Sci Technol. 1997;9:71–84.

    Google Scholar 

  • Tsuchida H. Science of high polymers. Tokyo: Baihukan; 1975. p. 85–7.

    Google Scholar 

  • Umeda T, Kozuka H, Sakka S. Fabrication of YBa2Cu3O7–δ superconducting fibers by the sol–gel method. Adv Ceram Mater. 1988;3:520–2.

    Article  Google Scholar 

  • Wolf C, Rüssel C. Sol–gel formation of zirconia: preparation, structure and rheology of sols. J Mater Sci. 1992;27:3749–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Sakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sakka, S. (2016). Viscosity and Spinnability of Gelling Solutions. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics