Skip to main content

Nonhydrolytic Sol-Gel Technology

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Since the early 1990s alternative nonhydrolytic sol-gel routes have emerged, aiming at solving the problems faced in conventional aqueous sol-gel by a drastic change of reactions and of reaction medium. Nonhydrolytic sol-gel (or nonaqueous sol-gel) is now a well-established method for the preparation of nanostructured silica-based or metal oxide-based materials. This chapter focuses on truly nonhydrolytic processes under strict water-free conditions. In contrast to hydrolytic sol-gel, in which water molecules supply the oxygen needed to build the oxide network, nonhydrolytic sol-gel involves an organic oxygen donor, for instance, an ether, an alcohol, or an alkoxide. The reactions are typically much slower than in aqueous media, as they generally involve the cleavage of O–C bonds rather than O–H bonds, providing improved control over the composition, structure, and texture of the resulting materials. For instance, nonhydrolytic sol-gel has been highly successful in the synthesis of crystalline oxide nanoparticles; it also offers simple, one-step routes to mixed oxides with well-controlled compositions and nonordered mesoporous textures, avoiding the use of supercritical drying or templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aboulaich A, Lorret O, Boury B, Mutin PH. Surfactant-free organo-soluble silica-titania and silica nanoparticles. Chem Mater. 2009;21:2577–9.

    Article  Google Scholar 

  • Aboulaich A, Boury B, Mutin PH. Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater. 2010;22:4519–21.

    Article  Google Scholar 

  • Aboulaich A, Boury B, Mutin PH. Reactive and organosoluble SnO2 nanoparticles by a surfactant-free non-hydrolytic sol-gel route. Eur J Inorg Chem. 2011;2011:3644–9.

    Article  Google Scholar 

  • Abtmeyer S, Pazik R, Wiglusz RJ, Malecka M, Seisenbaeva GA, Kessler VG. Lanthanum molybdate nanoparticles from the Bradley reaction: factors influencing their composition, structure, and functional characteristics as potential matrixes for luminescent phosphors. Inorg Chem. 2014;53:943–51.

    Article  Google Scholar 

  • Acosta S, Corriu RJP, Leclercq D, Lefevre P, Mutin PH, Vioux A. Preparation of alumina gels by a non-hydrolytic sol gel processing method. J Non-Cryst Solids. 1994;170:234–42.

    Article  Google Scholar 

  • Andrianainarivelo M, Corriu R, Leclercq D, Mutin PH, Vioux A. Mixed oxides SiO2-ZrO2 and SiO2-TiO2 By a non-hydrolytic sol-gel route. J Mater Chem. 1996;6:1665–71.

    Article  Google Scholar 

  • Antonietti M, Niederberger M, Smarsly B. Self-assembly in inorganic and hybrid systems: beyond the molecular scale. Dalton Trans. 2008:18–24.

    Google Scholar 

  • Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. J Mater Chem. 1996;6:1925–32.

    Article  Google Scholar 

  • Avci N, Smet PF, Poelman H, Velde N, Buysser K, Driessche I, Poelman D. Characterization of TiO2 powders and thin films prepared by non-aqueous sol–gel techniques. J Sol-Gel Sci Technol. 2009;52:424–31.

    Article  Google Scholar 

  • Ba J, Polleux J, Antonietti M, Niederberger M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv Mater. 2005;17:2509–12.

    Article  Google Scholar 

  • Ba J, Feldhoff A, Rohlfing DF, Wark M, Antonietti M, Niederberger M. Crystallization of indium tin oxide nanoparticles. From cooperative behavior to individuality. Small. 2007;3:310–7.

    Article  Google Scholar 

  • Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2010a;2:1358–74.

    Article  Google Scholar 

  • Bilecka I, Niederberger M. New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta. 2010b;55:7717–25.

    Article  Google Scholar 

  • Bilecka I, Djerdj I, Niederberger M. One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun. 2008:886–8.

    Google Scholar 

  • Bilecka I, Elser P, Niederberger M. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano. 2009;3:467–77.

    Article  Google Scholar 

  • Bilecka I, Kubli M, Amstad E, Niederberger M. Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process. J Sol-Gel Sci Technol. 2011a;57:313–22.

    Article  Google Scholar 

  • Bilecka I, Luo L, Djerdj I, Rossell MD, Jagodic M, Jaglicic Z, Masubuchi Y, Kikkawa S, Niederberger M. Microwave-assisted nonaqueous sol-gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals. J Phys Chem C. 2011b;115:1484–95.

    Article  Google Scholar 

  • Bouchmella K, Mutin PH, Stoyanova M, Poleunis C, Eloy P, Rodemerck U, Gaigneaux EM, Debecker DP. Olefin metathesis with mesoporous rhenium-silicium-aluminum mixed oxides obtained via a one-step non-hydrolytic sol-gel route. J Catal. 2013;301:233–41.

    Article  Google Scholar 

  • Bourget L, Corriu RJP, Leclercq D, Mutin PH, Vioux A. Non-hydrolytic sol-gel routes to silica. J Non-Cryst Solids. 1998a;242:81–91.

    Article  Google Scholar 

  • Bourget L, Mutin PH, Vioux A, Frances JM. Nonhydrolytic synthesis and structural study of methoxyl-terminated polysiloxane D/Q resins. J Polym Sci A. 1998b;36:2415–25.

    Google Scholar 

  • Bourget L, Leclercq D, Vioux A. Catalyzed nonhydrolytic sol-gel route to organosilsesquioxane gels. J Sol-Gel Sci Technol. 1999;14:137–47.

    Article  Google Scholar 

  • Cao M, Djerdj I, Antonietti M, Niederberger M. Nonaqueous synthesis of colloidal ZnGa2O4 nanocrystals and their photoluminescence properties. Chem Mater. 2007;19:5830–2.

    Article  Google Scholar 

  • Caruso J, Hampden-Smith MJ. Ester elimination: a general solvent dependent non-hydrolytic route to metal and mixed-metal oxides. J Sol-Gel Sci Technol. 1997;8:35–9.

    Google Scholar 

  • Clavel G, Marichy C, Pinna N. Sol-gel chemistry and atomic layer deposition. In: Pinna N, Knez M, editors. Atomic layer deposition of nanostructured materials. Weinheim: Wiley-VCH; 2012. p. 61–82.

    Chapter  Google Scholar 

  • Cojocariu AM, Mutin PH, Dumitriu E, Fajula F, Vioux A, Hulea V. Non-hydrolytic synthesis of mesoporous silica-titania catalysts for the mild oxidation of sulfur compounds with hydrogen peroxide. Chem Commun. 2008: 5357–9.

    Google Scholar 

  • Cojocariu AM, Mutin PH, Dumitriu E, Fajula F, Vioux A, Hulea V. Mild oxidation of bulky organic compounds with hydrogen peroxide over mesoporous TiO2-SiO2 xerogels prepared by non-hydrolytic sol-gel. Appl Catal B. 2010;97:407–13.

    Article  Google Scholar 

  • Cölfen H, Antonietti M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed. 2005;44:5576–91.

    Article  Google Scholar 

  • Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A. Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chem Mater. 1992a;4:961–3.

    Article  Google Scholar 

  • Corriu RJP, Leclercq D, Lefèvre P, Mutin PH, Vioux A. Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process. J Non-Cryst Solids. 1992b;146:301–3.

    Article  Google Scholar 

  • Corriu RJP, Leclercq D, Mutin PH, Sarlin L, Vioux A. Nonhydrolyticc sol-gel routes to layered metal(IV) and silicon phosphonates. J Mater Chem. 1998;8:1827–33.

    Article  Google Scholar 

  • Dai S, Ju YH, Gao HJ, Lin JS, Pennycook SJ, Barnes CE. Preparation of silica aerogel using ionic liquids as solvents. Chem Commun. 2000;3:243–4.

    Article  Google Scholar 

  • Dar MI, Sampath S, Shivashankar SA. Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J Mater Chem. 2012;22:22418–23.

    Article  Google Scholar 

  • Debecker DP, Mutin PH. Non-hydrolytic sol-gel routes to heterogeneous catalysts. Chem Soc Rev. 2012;41:3624–50.

    Article  Google Scholar 

  • Debecker DP, Bouchmella K, Poleunis C, Eloy P, Bertrand P, Gaigneaux EM, Mutin PH. Design of SiO2-Al2O3-MoO3 metathesis catalysts by nonhydrolytic sol-gel. Chem Mater. 2009;21:2817–24.

    Article  Google Scholar 

  • Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH. One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Appl Catal B. 2010a;94:38–45.

    Article  Google Scholar 

  • Debecker DP, Delaigle R, Bouchmella K, Eloy P, Gaigneaux EM, Mutin PH. Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route. Catal Today. 2010b;157:125–30.

    Article  Google Scholar 

  • Debecker DP, Hulea V, Mutin PH. Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A. 2013;451:192–206.

    Article  Google Scholar 

  • Djerdj I, Garnweitner G, Su DS, Niederberger M. Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles. J Solid State Chem. 2007;180:2154–65.

    Article  Google Scholar 

  • Ferreira RAS, Karmaoui M, Nobre SS, Carlos LD, Pinna N. Optical properties of lanthanide-doped lamellar nanohybrids. ChemPhysChem. 2006;7:2215–22.

    Article  Google Scholar 

  • Garnweitner G, Niederberger M. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles. J Am Ceram Soc. 2006;89:1801–8.

    Article  Google Scholar 

  • Garnweitner G, Niederberger M. Organic chemistry in inorganic nanomaterials synthesis. J Mater Chem. 2008;18:1171–82.

    Article  Google Scholar 

  • Garnweitner G, Antonietti M, Niederberger M. Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. Chem Commun. 2005:397–9.

    Google Scholar 

  • Garnweitner G, Goldenberg LM, Sakhno OV, Antonietti M, Niederberger M, Stumpe J. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small. 2007;3:1626–32.

    Article  Google Scholar 

  • Garnweitner G, Tsedev N, Dierke H, Niederberger M. Benzylamines as versatile agents for the one-pot synthesis and highly ordered stacking of anatase nanoplatelets. Eur J Inorg Chem. 2008;2008:890–5.

    Article  Google Scholar 

  • Horowitz AI, Panzer MJ. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications. J Mater Chem. 2012;22:16534–9.

    Article  Google Scholar 

  • Iwasaki M, Yasumori A, Shibata S, Yamane M. Preparation of high homogeneity BaO-TiO2-SiO2 gel. J Sol-Gel Sci Technol. 1994;2:387–91.

    Article  Google Scholar 

  • Jansen M, Guenther E. Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem Mater. 1995;7:2110–4.

    Article  Google Scholar 

  • Jansen M, Guenther E. Water- and hydroxyl group-free gels and xerogels based on a network of oxygen-bridged metal and/or semimetal atoms, and their manufacture and use. Eur Pat Appl. (Cerdec Aktiengesellschaft Keramische Farben, Germany). 1996. p. 11.

    Google Scholar 

  • Jia F, Zhang L, Shang X, Yang Y. Non-aqueous sol-gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv Mater. 2008;20:1050–4.

    Article  Google Scholar 

  • Jiang D, Xu Y, Hou B, Wu D, Sun Y. A simple non-aqueous route to anatase TiO2. Eur J Inorg Chem. 2008;1236–40.

    Google Scholar 

  • Joo J, Yu T, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc. 2003;125:6553–7.

    Article  Google Scholar 

  • Joo J, Kwon SG, Yu T, Cho M, Lee J, Yoon J, Hyeon T. Large-scale synthesis of TiO2 nanorods via non-hydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J Phys Chem B. 2005;109:15297–302.

    Article  Google Scholar 

  • Jun YW, Casula MF, Sim J-H, Kim SY, Cheon J, Alivisatos AP. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc. 2003;125:15981–5.

    Article  Google Scholar 

  • Kaper H, Karim B, Hubert Mutin P, Goettmann F. High surface area SiO2-ZrO2 mixed oxides as catalysts for Friedel-Crafts-type alkylation of arenes with alcohols and tandem cyclopropanation. ChemCatChem. 2012;4:1813–8.

    Article  Google Scholar 

  • Karmaoui M, Sa Ferreira RA, Mane AT, Carlos LD, Pinna N. Lanthanide-based lamellar nanohybrids: synthesis, structural characterization, and optical properties. Chem Mater. 2006;18:4493–9.

    Article  Google Scholar 

  • Koo B, Park J, Kim Y, Choi S-H, Sung Y-E, Hyeon T. Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors. J Phys Chem B. 2006;110:24318–23.

    Article  Google Scholar 

  • Koziej D, Fischer F, Kranzlin N, Caseri WR, Niederberger M. Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. ACS Appl Mater Interfaces. 2009;1:1097–104.

    Article  Google Scholar 

  • Kubli M, Luo L, Bilecka I, Niederberger M. Microwave-assisted nonaqueous sol-gel deposition of different spinel ferrites and barium titanate perovskite thin films. Chimia. 2010;64:170–2.

    Article  Google Scholar 

  • Lafond V, Mutin PH, Vioux A. Non-hydrolytic sol-gel routes based on alkyl halide elimination: toward better mixed oxide catalysts and new supports application to the preparation of a SiO2-TiO2 epoxidation catalyst. J Mol Catal A. 2002;182–183:81–8.

    Article  Google Scholar 

  • Lafond V, Mutin PH, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem Mater. 2004;16:5380–6.

    Article  Google Scholar 

  • Lorret O, Lafond V, Mutin PH, Vioux A. One-step synthesis of mesoporous hybrid titania-silica xerogels for the epoxidation of alkenes. Chem Mater. 2006;18:4707–9.

    Article  Google Scholar 

  • Ludi B, Olliges-Stadler I, Rossell MD, Niederberger M. Extension of the benzyl alcohol route to metal sulfides: “nonhydrolytic” thio sol-gel synthesis of ZnS and SnS2. Chem Commun. 2011;47:5280–2.

    Article  Google Scholar 

  • Luo L, Haefliger K, Xie D, Niederberger M. Transparent conducting Sn:ZnO films deposited from nanoparticles. J Sol-Gel Sci Technol. 2013a;65:28–35.

    Article  Google Scholar 

  • Luo L, Rossell MD, Xie D, Erni R, Niederberger M. Microwave-assisted nonaqueous sol-gel synthesis: from Al:ZnO nanoparticles to transparent conducting films. ACS Sustain Chem Eng. 2013b;1:152–60.

    Google Scholar 

  • Maksasithorn S, Praserthdam P, Suriye K, Devillers M, Debecker DP. WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Appl Catal A. 2014;488:200–7.

    Article  Google Scholar 

  • Mizuno M, Takahashi M, Tokuda Y, Yoko T. Organic-inorganic hybrid material of phenyl-modified polysilicophosphate prepared through nonaqueous acid-base reaction. Chem Mater. 2006;18:2075–80.

    Article  Google Scholar 

  • Morselli D, Bondioli F, Fiorini M, Messori M. Poly(methyl methacrylate)-TiO2 nanocomposites obtained by non-hydrolytic sol-gel synthesis: the innovative tert-butyl alcohol route. J Mater Sci. 2012a;47:7003–12.

    Article  Google Scholar 

  • Morselli D, Bondioli F, Sangermano M, Messori M. Photo-cured epoxy networks reinforced with TiO2 in-situ generated by means of non-hydrolytic sol-gel process. Polymer. 2012b;53:283–90.

    Article  Google Scholar 

  • Mutin PH, Vioux A. Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater. 2009;21:582–96.

    Article  Google Scholar 

  • Mutin PH, Vioux A. Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A. 2013;1:11504–12.

    Article  Google Scholar 

  • Mutin PH, Popa AF, Vioux A, Delahay G, Coq B. Nonhydrolytic vanadia-titania xerogels: synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Appl Catal B Environ. 2006;69:49–57.

    Article  Google Scholar 

  • Neouze M-A, Le Bideau J, Gaveau P, Bellayer S, Vioux A. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater. 2006;18:3931–6.

    Article  Google Scholar 

  • Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res. 2007;40:793–800.

    Article  Google Scholar 

  • Niederberger M, Cölfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006;8:3271–87.

    Article  Google Scholar 

  • Niederberger M, Garnweitner G. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J. 2006;12:7282–302.

    Article  Google Scholar 

  • Niederberger M, Bartl MH, Stucky GD. Benzyl alcohol and titanium tetrachloride-A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem Mater. 2002a;14:4364–70.

    Article  Google Scholar 

  • Niederberger M, Bartl MH, Stucky GD. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc. 2002b;124:13642–3.

    Article  Google Scholar 

  • Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N. Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol-Gel Sci Technol. 2006a;40:259–66.

    Article  Google Scholar 

  • Niederberger M, Garnweitner G, Pinna N, Neri G. Non-aqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications. Prog Solid State Chem. 2006b;33:59–70.

    Article  Google Scholar 

  • Niederberger M, Garnweitner G, Ba J, Polleux J, Pinna N. Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. Int J Nanotechnol. 2007;4:263–81.

    Article  Google Scholar 

  • Olliges-Stadler I, Rossell MD, Sueess MJ, Ludi B, Bunk O, Pedersen JS, Birkedal H, Niederberger M. A comprehensive study of the crystallization mechanism involved in the nonaqueous formation of tungstite. Nanoscale. 2013;5:8517–25.

    Article  Google Scholar 

  • Pazik R, Tekoriute R, Hakansson S, Wiglusz R, Strek W, Seisenbaeva GA, Gun’ko YK, Kessler VG. Precursor and solvent effects in the nonhydrolytic synthesis of complex oxide nanoparticles for bioimaging applications by the ether elimination (Bradley) reaction. Chem Eur J. 2009;15:6820–6 .S6820/6821-S6820/6811

    Article  Google Scholar 

  • Pazik R, Seisenbaeva GA, Gohil S, Wiglusz R, Kepinski L, Strek W, Kessler VG. Simple and efficient synthesis of a Nd:LaAlO3 NIR nanophosphor from rare earth alkoxo-monoaluminates Ln2Al2(OiPr)12(iPrOH)2 single source precursors by Bradley reaction. Inorg Chem. 2010;49:2684–91.

    Article  Google Scholar 

  • Pazik R, Piasecka E, Malecka M, Kessler VG, Idzikowski B, Sniadecki Z, Wiglusz RJ. Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic MFe2O4 (M-Mn2+, Fe2+, Co2+, Ni2+) ferrite spinel by a modified Bradley reaction. RSC Adv. 2013;3:12230–43.

    Article  Google Scholar 

  • Pereira PFS, Matos MG, Ferreira CMA, De Faria EH, Calefi PS, Rocha LA, Ciuffi KJ, Nassar EJ. Aluminate matrix doped with Tm3+/Tb3+/Eu3+ obtained by non-hydrolytic sol-gel route: white light emission. J Lumin. 2014;146:394–7.

    Article  Google Scholar 

  • Petitto C, Mutin HP, Gr D. Hydrothermal activation of silver supported alumina catalysts prepared by sol-gel method: application to the selective catalytic reduction (SCR) of NOx by n-decane. Appl Catal B Environ. 2013;134–135:258–64.

    Article  Google Scholar 

  • Pinna N, Niederberger M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed. 2008;47:5292–304.

    Article  Google Scholar 

  • Pinna N, Garnweitner G, Antonietti M, Niederberger M. Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv Mater. 2004;16:2196–200.

    Article  Google Scholar 

  • Pinna N, Garnweitner G, Antonietti M, Niederberger M. A general nonaqueous route to binary metal oxide nanocrystals involving a C–C bond cleavage. J Am Chem Soc. 2005;127:5608–12.

    Article  Google Scholar 

  • Polleux J, Pinna N, Antonietti M, Niederberger M. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J Am Chem Soc. 2005;127:15595–601.

    Article  Google Scholar 

  • Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem Int Ed. 2006;45:261–5.

    Article  Google Scholar 

  • Polleux J, Rasp M, Louban I, Plath N, Feldhoff A, Spatz JP. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays. ACS Nano. 2011;5:6355–64.

    Article  Google Scholar 

  • Pucci A, Willinger M-G, Liu F, Zeng X, Rebuttini V, Clavel G, Bai X, Ungar G, Pinna N. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano. 2012;6:4382–91.

    Article  Google Scholar 

  • Sciancalepore C, Bondioli F, Messori M, Barrera G, Tiberto P, Allia P. Epoxy nanocomposites functionalized with in situ generated magnetite nanocrystals: microstructure, magnetic properties, interaction among magnetic particles. Polymer. 2015;59:278–89.

    Article  Google Scholar 

  • Sharp KG. A two-component, non-aqueous route to silica gel. J Sol-Gel Sci Technol. 1994;2:35–41.

    Article  Google Scholar 

  • Skoda D, Styskalik A, Moravec Z, Bezdicka P, Barnes CE, Pinkas J. Mesoporous titanosilicates by templated non-hydrolytic sol-gel reactions. J Sol-Gel Sci Technol. 2015a;74:810–22.

    Article  Google Scholar 

  • Skoda D, Styskalik A, Moravec Z, Bezdicka P, Pinkas J. Templated non-hydrolytic synthesis of mesoporous zirconium silicates and their catalytic properties. J Mater Sci. 2015b;50:3371–82.

    Article  Google Scholar 

  • Steunou N, Ribot F, Boubekeur K, Maquet J, Sanchez C. Ketones as an oxolation source for the synthesis of titanium-oxo-organoclusters. New J Chem. 1999;23:1079–86.

    Article  Google Scholar 

  • Styskalik A, Skoda D, Pinkas J, Mathur S. Non-hydrolytic synthesis of titanosilicate xerogels by acetamide elimination and their use as epoxidation catalysts. J Sol-Gel Sci Technol. 2012;63:463–72.

    Article  Google Scholar 

  • Styskalik A, Skoda D, Moravec Z, Abbott JG, Barnes CE, Pinkas J. Synthesis of homogeneous silicophosphate xerogels by non-hydrolytic condensation reactions. Microporous Mesoporous Mater. 2014;197:204–12.

    Article  Google Scholar 

  • Styskalik A, Skoda D, Moravec Z, Babiak M, Barnes CE, Pinkas J. Control of micro/mesoporosity in non-hydrolytic hybrid silicophosphate xerogels. J Mater Chem A. 2015a;3:7477–87.

    Article  Google Scholar 

  • Styskalik A, Skoda D, Moravec Z, Roupcova P, Barnes CE, Pinkas J. Non-aqueous template-assisted synthesis of mesoporous nanocrystalline silicon orthophosphate. RSC Adv. 2015b;5:73670–6.

    Article  Google Scholar 

  • Szeifert JM, Feckl JM, Fattakhova-Rohlfing D, Liu Y, Kalousek V, Rathousky J, Bein T. Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion. J Am Chem Soc. 2010;132:12605–11.

    Article  Google Scholar 

  • Tang J, Fabbri J, Robinson RD, Zhu Y, Herman IP, Steigerwald ML, Brus LE. Solid-solution nanoparticles: use of a nonhydrolytic sol-gel synthesis to prepare HfO2 and HfxZr1−xO2 nanocrystals. Chem Mater. 2004;16:1336–42.

    Article  Google Scholar 

  • Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc. 1999;121:1613–4.

    Article  Google Scholar 

  • Vazquez-Vazquez C, Lovelle M, Mateo C, Lopez-Quintela MA, Bujan-Nunez MC, Serantes D, Baldomir D, Rivas J. Magnetocaloric effect and size-dependent study of the magnetic properties of cobalt ferrite nanoparticles prepared by solvothermal synthesis. Phys Status Solidi A. 2008;205:1358–62.

    Article  Google Scholar 

  • Vazquez-Vazquez C, Lopez-Quintela MA, Bujan-Nunez MC, Rivas J. Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res. 2011;13:1663–76.

    Article  Google Scholar 

  • Viau L, Neouze M-A, Biolley C, Volland S, Brevet D, Gaveau P, Dieudonne P, Galarneau A, Vioux A. Ionic liquid mediated sol-gel synthesis in the presence of water or formic acid: which synthesis for which material? Chem Mater. 2012;24:3128–34.

    Article  Google Scholar 

  • Vioux A. Nonhydrolytic sol-gel routes to oxides. Chem Mater. 1997;9:2292–9.

    Article  Google Scholar 

  • Wohlrab S, Pinna N, Antonietti M, Cölfen H. Polymer-induced alignment of dl-alanine nanocrystals to crystalline mesostructures. Chem Eur J. 2005;11:2903–13.

    Article  Google Scholar 

  • Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc. 2011;133:933–40.

    Article  Google Scholar 

  • Zhang L, Garnweitner G, Djerdj I, Antonietti M, Niederberger M. Generalized nonaqueous sol-gel synthesis of different transition-metal niobate nanocrystals and analysis of the growth mechanism. Chem Asian J. 2008;3:746–52.

    Article  Google Scholar 

  • Zhou S, Antonietti M, Niederberger M. Low-temperature synthesis of gamma-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media. Small. 2007;3:763–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Vioux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Vioux, A., Hubert Mutin, P. (2016). Nonhydrolytic Sol-Gel Technology. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics