Skip to main content

Enzymatic Sol–Gel Biosensors

  • Living reference work entry
  • First Online:
Book cover Handbook of Sol-Gel Science and Technology

Abstract

We review the recent progress in the use of the sol–gel technology to develop enzymatic biosensors. We have emphasized how the sol–gel matrix properties turn them as ideal hosts to encapsulate enzymes that can act as the biorecognition elements of the biosensor device. However, at the same time, we have stressed the strong requirements imposed on the enzyme-doped sol–gel preparation in order to obtain an effective device operational over time. Thus, we explain how the sol–gel preparation conditions and properties have to be tuned in order to achieve a reliable biosensor. In this sense, several approaches and strategies to meet these requirements as well as to improve the biosensor performance are described. As the literature on these topics is indeed numerous, we have not intended to perform an exhaustive revision but rather to review the most important aspects of the subject providing at the same time with representative examples selected from the literature. In any case, in the text are referenced interesting reviews and papers that can be useful to complement this work because they use either points of view or literature works different from those employed by us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

(Ru(bipy)3)2+ :

tris (2,2′-bipyridyl)-ruthenium (II)

AChE:

AcetylCholinEsterase

ADH:

Alcohol DeHydrogenase

AFM:

Atomic Force Microscopy

APTOS or APTES:

AminoPropyl-TriethOxySilane

ATCh:

AcetylThioCholine

ChE:

Cholesterol Esterase

ChOx:

Cholesterol Oxidase

COx:

Choline Oxidase

DET:

Direct Electron Transfer

DTA:

Differential Thermal Analysis

ECL:

Electrogenerated ChemiLuminiscence

FAS:

Triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane

GC:

Glassy Carbon

GOPMOS:

3-GlycidOxyPropyl-triMethOxySilane

GOx:

Glucose Oxidase

Hb:

Hemoglobin

HRP:

HorseRadish Peroxidase

IDA:

InterDigitated Array

IP:

Isoelectric Point

LOx:

Lactate Oxidase

MPTS:

(3-MercaptoPropyl)-TrimeThoxySilane

MTMOS:

MethylTriMethOxySilane

NAD(H):

Nicotinamide Adenine Dinucleotide

NADP:

Nicotinamide Adenine Dinucleotide Phosphate

ORMOSILs:

ORganically MOdified SILicate(s)

PDDA:

Poly(DiallylDimethylAmmonium) chloride

PEG:

PolyEthylene Glycol

PNR:

Poly(Neutral Red)

SECM:

Scanning ElectroChemical Microscopy

SEM:

Scanning Electron Microscopy

SOD:

SuperOxide Dismutase

TEOS:

TetraEthOxySilane

TGA:

ThermoGravimetric Analysis

TMOS:

TetraMethOxySilane

XnOx:

Xanthine Oxidase

References

  • Alqasaimeh MS, Heng LY, Ahmad M. A urea biosensor from stacked sol–gel films with immobilized nile blue chromoionophore and urease enzyme. Sensors. 2007;7(10):2251–62.

    Article  Google Scholar 

  • Ansari SG, Wahab R, Ansari ZA, Kim YS, Khang G, Al-Hajry A, et al. Effect of nanostructure on the urea sensing properties of sol–gel synthesized ZnO. Sens Actuators B. 2009;137(2):566–73.

    Article  Google Scholar 

  • Audebert P, Demaille C, Sanchez C. Electrochemical probing of the activity of glucose-oxidase embedded sol–gel matrices. Chem Mater. 1993;5(7):911–3.

    Article  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of sol–gel materials. J Mater Chem. 2006;16(11):1013–30.

    Article  Google Scholar 

  • Aylott JW, Richardson DJ, Russell DA. Optical biosensing of gaseous nitric oxide using spin-coated sol–gel thin films. Chem Mater. 1997;9(11):2261–3.

    Article  Google Scholar 

  • Barbadillo M, Casero E, Petit-Dominguez MD, Vazquez L, Pariente F, Lorenzo E. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic–inorganic hybrid composite material. Talanta. 2009;80(2):797–802.

    Article  Google Scholar 

  • Barbadillo M, Casero E, Petit-Dominguez MD, Pariente F, Lorenzo E, Vazquez L. Surface study of the building steps of enzymatic sol–gel biosensors at the micro- and nano-scales. J Sol–Gel Sci Technol. 2011;58(2):452–62.

    Article  Google Scholar 

  • Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta. 2015;872:7–25.

    Article  Google Scholar 

  • Blyth DJ, Aylott JW, Richardson DJ, Russell DA. Sol–gel encapsulation of metalloproteins for the development of optical biosensors for nitrogen-monoxide and carbon-monoxide. Analyst. 1995;120(11):2725–30.

    Article  Google Scholar 

  • Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M. Biochemically active sol–gel glasses – the trapping of enzymes. Mater Lett. 1990;10(1–2):1–5.

    Article  Google Scholar 

  • Brinker CJ. Hydrolysis and condensation of silicates – effects on structure. J Non Cryst Solids. 1988;100(1–3):31–50.

    Article  Google Scholar 

  • Briones M, Casero E, Vázquez L, Pariente F, Lorenzo E, Petit-Domínguez MD. Diamond nanoparticles as a way to improve electron transfer in sol–gel l-lactate biosensing platforms. Anal Chim Acta. 2016;908:141–9.

    Article  Google Scholar 

  • Cai Y, Shinar R, Zhou Z, Shinar J. Multianalyte sensor array based on an organic light emitting diode platform. Sens Actuators B. 2008;134(2):727–35.

    Article  Google Scholar 

  • Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, et al. Fully integrated biochip platforms for advanced healthcare. Sensors. 2012;12(8):11013–60.

    Article  Google Scholar 

  • Casero E, Vazquez L, Parra-Alfambra AM, Lorenzo E. AFM, SECM and QCM as useful analytical tools in the characterization of enzyme-based bioanalytical platforms. Analyst. 2010;135(8):1878–903.

    Article  Google Scholar 

  • Casero E, Petit-Dominguez MD, Vazquez L, Ramirez-Asperilla I, Parra-Alfambra AM, Pariente F, et al. Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination. Talanta. 2013;115:401–8.

    Article  Google Scholar 

  • Chang G, Tatsu Y, Goto T, Imaishi H, Morigaki K. Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays. Talanta. 2010;83(1):61–5.

    Article  Google Scholar 

  • Chen HJ, Dong SJ. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic-carbon nanotube nanocomposite film. Biosens Bioelectron. 2007;22(8):1811–5.

    Article  Google Scholar 

  • Chen XJ, Zhu JW, Tian R, Yao C. Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol–gel organic–inorganic composite. Sens Actuators B. 2012;163(1):272–80.

    Article  Google Scholar 

  • Cheng JJ, Di JW, Hong JH, Yao KA, Sun YB, Zhuang JY, et al. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol–gel modified gold electrode. Talanta. 2008;76(5):1065–9.

    Article  Google Scholar 

  • Chiorcea-Paquim AM, Pauliukaite R, Brett CMA, Oliveira-Brett AM. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol–gel encapsulated glucose oxidase electrochemical biosensors. Biosens Bioelectron. 2008;24(2):297–305.

    Article  Google Scholar 

  • Cho EJ, Tao ZY, Tehan EC, Bright FV. Multianalyte pin-printed biosensor arrays based on protein-doped xerogels. Anal Chem. 2002;74(24):6177–84.

    Article  Google Scholar 

  • Choi HN, Kim MA, Lee WY. Amperometric glucose biosensor based on sol–gel-derived metal oxide/Nafion composite films. Anal Chim Acta. 2005;537(1–2):179–87.

    Article  Google Scholar 

  • Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci. 1962;102(1):29.

    Article  Google Scholar 

  • Collinson MM, Howells AR. Sol-gels and electrochemistry: research at the intersection. Anal Chem. 2000;72(21):702A–9.

    Article  Google Scholar 

  • Cosnier S. Electrochemical biosensors. Singapore: Pan Stanford Publishing; 2015.

    Google Scholar 

  • Dai ZH, Xu XX, Wu L, Ju HX. Detection of trace phenol based on mesoporous silica derived tyrosinase-peroxidase biosensor. Electroanalysis. 2005;17(17):1571–7.

    Article  Google Scholar 

  • Dave BC, Dunn B, Valentine JS, Zink JI. Sol–Gel encapsulation methods for biosensors. Anal Chem. 1994;66(22):A1120–7.

    Article  Google Scholar 

  • del Mar Cordero-Rando M, Hidalgo-Hidalgo de Cisneros JL, Blanco E, Naranjo-Rodriguez I. The Sonogel-Carbon electrode as a sol–gel graphite-based electrode. Anal Chem. 2002;74(10):2423–7.

    Article  Google Scholar 

  • Di JW, Shen CP, Peng SH, Tu YF, Li SJ. A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol–gel network on gold modified electrode. Anal Chim Acta. 2005;553(1–2):196–200.

    Article  Google Scholar 

  • Di JW, Zhang M, Yao KA, Bi SP. Direct voltammetry of catalase immobilized on silica sol–gel and cysteine modified gold electrode and its application. Biosens Bioelectron. 2006;22(2):247–52.

    Article  Google Scholar 

  • Di JW, Cheng JJ, Xu QA, Zheng HI, Zhuang JY, Sun YB, et al. Direct electrochemistry of lactate dehydrogenase immobilized on silica sol–gel modified gold electrode and its application. Biosens Bioelectron. 2007a;23(5):682–7.

    Article  Google Scholar 

  • Di JW, Peng SH, Shen CP, Gao YS, Tu YF. One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron. 2007b;23(1):88–94.

    Article  Google Scholar 

  • Doong RA, Shih HM. Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol–gel matrix. Biosens Bioelectron. 2006;22(2):185–91.

    Article  Google Scholar 

  • Du D, Chen S, Cai J, Zhang A. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide. Biosens Bioelectron. 2007a;23(1):130–4.

    Article  Google Scholar 

  • Du D, Chen SZ, Cai J, Song DD. Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol–gel composite. J Electroanal Chem. 2007b;611(1–2):60–6.

    Article  Google Scholar 

  • Du D, Chen SZ, Cai J, Zhang AD. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol–gel interface. Talanta. 2008;74(4):766–72.

    Article  Google Scholar 

  • Duong HD, Il Rhee J. Use of CdSe/ZnS luminescent quantum dots incorporated within sol–gel matrix for urea detection. Anal Chim Acta. 2008;626(1):53–61.

    Article  Google Scholar 

  • Dvorak O, Dearmond MK. Electrode modification by the sol–gel method. J Phys Chem. 1993;97(11):2646–8.

    Article  Google Scholar 

  • Elkaoutit M, Naranjo-Rodriguez I, Dominguez M, Hernandez-Artiga MP, Bellida-Milla D, de Cisneros J. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite. Electrochim Acta. 2008a;53(24):7131–7.

    Article  Google Scholar 

  • ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Dominguez M, de Cisneros J. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. Talanta. 2008b;75(5):1348–55.

    Article  Google Scholar 

  • Fernandez-Sanchez C, Cadarso VJ, Darder M, Dominguez C, Llobera A. Patterning high-aspect-ratio sol–gel structures by microtransfer molding. Chem Mater. 2008;20(8):2662–8.

    Article  Google Scholar 

  • Ferrer ML, del Monte F, Levy D. A novel and simple alcohol-free sol–gel route for encapsulation of labile proteins. Chem Mater. 2002;14(9):3619−21.

    Google Scholar 

  • Fu GL, Yue XL, Dai ZF. Glucose biosensor based on covalent immobilization of enzyme in sol–gel composite film combined with Prussian blue/carbon nanotubes hybrid. Biosens Bioelectron. 2011;26(9):3973–6.

    Article  Google Scholar 

  • Gan T, Hu SS. Electrochemical sensors based on graphene materials. Microchim Acta. 2011;175(1–2):1–19.

    Article  Google Scholar 

  • Glezer V, Lev O. Sol–gel vanadium pentaoxide glucose biosensor. J Am Chem Soc. 1993;115(6):2533–4.

    Article  Google Scholar 

  • Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta. 1999;400:91–108.

    Article  Google Scholar 

  • Gupta R, Chaudhury NK. Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron. 2007;22(11):2387–99.

    Article  Google Scholar 

  • Gutierrez JAR, Dominguez MDP, Macias JMP. Development of ionoselective electrochemical sensors by using the sol–gel process. Anal Chim Acta. 2004;524(1–2):339–46.

    Article  Google Scholar 

  • Hench LL, West JK. The sol–gel process. Chem Rev. 1990;90(1):33–72.

    Article  Google Scholar 

  • Hossain SMZ, Brennan JD. beta-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem. 2011;83(22):8772–8.

    Article  Google Scholar 

  • Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem. 2009a;81(21):9055–64.

    Article  Google Scholar 

  • Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, et al. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol–gel-derived bioinks. Anal Chem. 2009b;81(13):5474–83.

    Article  Google Scholar 

  • Hou SH, Ou ZM, Chen Q, Wu BY. Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol–gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosens Bioelectron. 2012;33(1):44–9.

    Article  Google Scholar 

  • Huang J, Li J, Yang Y, Wang XS, Wu BY, Anzai JI, et al. Development of an amperometric L-lactate biosensor based on L-lactate oxidase immobilized through silica sol–gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode. Mater Sci Eng C-Biomim Supramol Syst. 2008;28(7):1070–5.

    Article  Google Scholar 

  • Huang HM, Huang PK, Kuo WH, Ju YH, Wang MJ. Sol–gel immobilized enzymatic glucose biosensor on gold interdigitated array (IDA) microelectrode. J Sol–Gel Sci Technol. 2013;67(3):492–500.

    Article  Google Scholar 

  • Hussain F, Birch DJS, Pickup JC. Glucose sensing based on the intrinsic fluorescence of sol–gel immobilized yeast hexokinase. Anal Biochem. 2005;339(1):137–43.

    Article  Google Scholar 

  • Jeronimo PCA, Araujo AN, Montenegro M. Optical sensors and biosensors based on sol–gel films. Talanta. 2007;72(1):13–27.

    Article  Google Scholar 

  • Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network. Anal Chem. 2002;74(9):2217–23.

    Article  Google Scholar 

  • Kandimalla VB, Tripathi VS, Ju HX. Immobilization of biomolecules in sol-gels: biological and analytical applications. Crit Rev Anal Chem. 2006;36(2):73–106.

    Article  Google Scholar 

  • Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta. 2008;74(4):879–86.

    Article  Google Scholar 

  • Kang XH, Wang J, Tang ZW, Wu H, Lin YH. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic–inorganic film of chitosan/sol–gel/carbon nanotubes. Talanta. 2009;78(1):120–5.

    Article  Google Scholar 

  • Kochana J, Gala A, Parczewski A, Adamski J. Titania sol–gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem. 2008;391(4):1275–81.

    Article  Google Scholar 

  • Kochmann S, Hirsch T, Wolfbeis OS. Graphenes in chemical sensors and biosensors. Trac-Trends Anal Chem. 2012;39:87–113.

    Article  Google Scholar 

  • Kuswandi B, Fikriyah CI, Gani AA. An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta. 2008;74(4):613–8.

    Article  Google Scholar 

  • Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, et al. Organically modified sol–gel sensors. Anal Chem. 1995;67(1):A22–30.

    Article  Google Scholar 

  • Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, et al. Sol–gel materials in electrochemistry. Chem Mater. 1997;9(11):2354–75.

    Article  Google Scholar 

  • Ligler FS, Taitt CR. Optical biosensors: today and tomorrow. Oxford (UK): Elsevier Science; 2008.

    Google Scholar 

  • Lin CL, Shih CL, Chau LK. Amperometric L-Lactate sensor based on sol–gel processing of an enzyme-linked silicon alkoxide. Anal Chem. 2007;79(10):3757–63.

    Article  Google Scholar 

  • Liu SQ, Sun YM. Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol–gel membrane for glucose and ATP detections. Biosens Bioelectron. 2007;22(6):905–11.

    Article  Google Scholar 

  • Liu Y, Shi LH, Wang MJ, Li ZY, Liu HT, Li JH. A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application. Green Chem. 2005a;7(9):655–8.

    Article  Google Scholar 

  • Liu Y, Wang MJ, Li J, Li ZY, He P, Liu HT, et al. Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol–gel host materials. Chem Commun. 2005b;13:1778–80.

    Article  Google Scholar 

  • Liu ZM, Liu YL, Yang HF, Yang Y, Shen GL, Yu RQ. A mediator-free tyrosinase biosensor based on ZnO sol–gel matrix. Electroanalysis. 2005c;17(12):1065–70.

    Article  Google Scholar 

  • Liu L, Toledano R, Danieli T, Zhang JQ, Hu JM, Mandler D. Electrochemically patterning sol–gel structures on conducting and insulating surfaces. Chem Commun. 2011;47(24):6909–11.

    Article  Google Scholar 

  • Llobera A, Cadarso VJ, Darder M, Dominguez C, Fernandez-Sanchez C. Full-field photonic biosensors based on tunable bio-doped sol–gel glasses. Lab Chip. 2008;8(7):1185–90.

    Article  Google Scholar 

  • Lu HY, Yang J, Rusling JF, Hu NF. Vapor-surface sol–gel deposition of titania alternated with protein adsorption for assembly of electroactive, enzyme-active films. Electroanalysis. 2006;18(4):379–90.

    Article  Google Scholar 

  • Luckham RE, Brennan JD. Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol–gel/enzyme/gold nanoparticle composites. Analyst. 2010;135(8):2028–35.

    Article  Google Scholar 

  • Magner E. Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev. 2013;42(15):6213–22.

    Article  Google Scholar 

  • Marazuela MD, Moreno-Bondi MC. Fiber-optic biosensors – an overview. Anal Bioanal Chem. 2002;372(5–6):664–82.

    Article  Google Scholar 

  • Matsuhisa H, Tsuchiya M, Hasebe Y. Protein and polysaccharide-composite sol–gel silicate film for an interference-free amperometric glucose biosensor. Colloids Surf B-Biointerfaces. 2013;111:523–9.

    Article  Google Scholar 

  • McNaught AD, Wilkinson A, International Union of Pure and Applied Chemistry. Compendium of chemical terminology: IUPAC recommendations. Oxford (UK): Blackwell Science; 1997.

    Google Scholar 

  • Miao Y, Tan SN. Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal Chim Acta. 2001;437(1):87–93.

    Article  Google Scholar 

  • Michel PE, Gautier-Sauvigne SM, Blum LJ. Luciferin incorporation in the structure of acrylic microspheres with subsequent confinement in a polymeric film: a new method to develop a controlled release-based biosensor for ATP. ADP AMP Talanta. 1998a;47(1):169–81.

    Article  Google Scholar 

  • Michel PE, Gautier-Sauvigne SM, Blum LJ. A transient enzymatic inhibition as an efficient tool for the discriminating bioluminescent analysis of three adenylic nucleotides with a fiberoptic sensor based on a compartmentalized tri-enzymatic sensing layer. Anal Chim Acta. 1998b;360(1–3):89–99.

    Article  Google Scholar 

  • Monton MRN, Lebert JM, Little JRL, Nair JJ, McNulty J, Brennan JD. A sol–gel-derived acetylcholinesterase microarray for nanovolume small-molecule screening. Anal Chem. 2010;82(22):9365–73.

    Article  Google Scholar 

  • Monton MRN, Forsberg EM, Brennan JD. Tailoring sol–gel-derived silica materials for optical biosensing. Chem Mater. 2012;24(5):796–811.

    Article  Google Scholar 

  • Nadzhafova O, Etienne M, Walcarius A. Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol–gel silica thin films on glassy carbon. Electrochem Commun. 2007;9(5):1189–95.

    Article  Google Scholar 

  • Newman JD, Setford SJ. Enzymatic biosensors. Mol Biotechnol. 2006;32(3):249–68.

    Article  Google Scholar 

  • Nogala W, Burchardt M, Opallo M, Rogalski J, Wittstock G. Scanning electrochemical microscopy study of laccase within a sol–gel processed silicate film. Bioelectrochemistry. 2008;72(2):174–82.

    Article  Google Scholar 

  • Nogala W, Szot K, Burchardt M, Roelfs F, Rogalski J, Opallo M, et al. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol–gel processed silicate film. Analyst. 2010;135(8):2051–8.

    Article  Google Scholar 

  • Oh BK, Robbins ME, Nablo BJ, Schoenfisch MH. Miniaturized glucose biosensor modified with a nitric oxide-releasing xerogel microarray. Biosens Bioelectron. 2005;21(5):749–57.

    Article  Google Scholar 

  • Parra-Alfambra AM, Casero E, Petit-Dominguez MD, Barbadillo M, Pariente F, Vazquez L, et al. New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analyst. 2011;136(2):340–7.

    Article  Google Scholar 

  • Pastor I, Salinas-Castillo A, Esquembre R, Mallavia R, Mateo CR. Multienzymatic system immobilization in sol–gel slides: fluorescent superoxide biosensors development. Biosens Bioelectron. 2010;25(6):1526–9.

    Article  Google Scholar 

  • Pauliukaite R, Brett CMA. Characterization of novel glucose oxysilane sol–gel electrochemical biosensors with copper hexacyanoferrate mediator. Electrochim Acta. 2005;50(25–26):4973–80.

    Article  Google Scholar 

  • Pauliukaite R, Paquim AMC, Brett AMO, Brett CMA. Electrochemical, EIS and AFM characterisation of biosensors: trioxysilane sol–gel encapsulated glucose oxidase with two different redox mediators. Electrochim Acta. 2006;52(1):1–8.

    Article  Google Scholar 

  • Pauliukaite R, Schoenleber M, Vadgama P, Brett CMA. Development of electrochemical biosensors based on sol–gel enzyme encapsulation and protective polymer membranes. Anal Bioanal Chem. 2008;390(4):1121–31.

    Article  Google Scholar 

  • Peng HP, Huang ZJ, Zheng YJ, Chen W, Liu AL, Lin XH. A novel nanocomposite matrix based on graphene oxide and ferrocene-branched organically modified sol–gel/chitosan for biosensor application. J Solid State Electrochem. 2014;18(7):1941–9.

    Article  Google Scholar 

  • Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. 2008;53(19):5848–66.

    Article  Google Scholar 

  • Pirozzi D, Fanelli E, Aronne A, Pernice P, Mingione A. Lipase entrapment in a zirconia matrix: sol–gel synthesis and catalytic properties. J Mol Catal B-Enzym. 2009;59(1–3):116–20.

    Article  Google Scholar 

  • Portaccio M, Lepore M, Della Ventura B, Stoilova O, Manolova N, Rashkov I, et al. Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix. J Sol–Gel Sci Technol. 2009;50(3):437–48.

    Article  Google Scholar 

  • Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. Trac-Trends Anal Chem. 2010;29(9):954–65.

    Article  Google Scholar 

  • Ruiz-Hitzky E, Aranda P, Darder M, Ogawa M. Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chem Soc Rev. 2011;40(2):801–28.

    Article  Google Scholar 

  • Rupcich N, Goldstein A, Brennan JD. Optimization of sol–gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem Mater. 2003;15(9):1803–11.

    Article  Google Scholar 

  • Saleem M, Yu HJ, Wang L, Zain ul A, Khalid H, Akram M, et al. Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal Chim Acta. 2015;876:9–25.

    Article  Google Scholar 

  • Salinas-Castillo A, Pastor I, Mallavia R, Mateo CR. Immobilization of a trienzymatic system in a sol–gel matrix: a new fluorescent biosensor for xanthine. Biosens Bioelectron. 2008;24(4):1053–6.

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30(3):489–511.

    Article  Google Scholar 

  • Shacham R, Avnir D, Mandler D. Electrodeposition of methylated sol–gel films on conducting surfaces. Adv Mater. 1999;11(5):384–8.

    Article  Google Scholar 

  • Shi GY, Sun ZY, Liu MC, Zhang L, Liu Y, Qu YH, et al. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol–gel deposition. Anal Chem. 2007;79(10):3581–8.

    Article  Google Scholar 

  • Sicard C, Brennan JD. Bioactive paper: biomolecule immobilization methods and applications in environmental monitoring. Mrs Bull. 2013;38(4):331–4.

    Article  Google Scholar 

  • Singh S, Singhal R, Malhotra BD. Immobilization of cholesterol esterase and cholesterol oxidase onto sol–gel films for application to cholesterol biosensor. Anal Chim Acta. 2007;582(2):335–43.

    Article  Google Scholar 

  • Singh S, Jain DVS, Singla ML. Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sens Actuators B. 2013;182:161–9.

    Article  Google Scholar 

  • Sinha R, Ganesana M, Andreescu S, Stanciu L. AChE biosensor based on zinc oxide sol–gel for the detection of pesticides. Anal Chim Acta. 2010;661(2):195–9.

    Article  Google Scholar 

  • Song Z, Huang JD, Wu BY, Shi HB, Anzai JI, Chen Q. Amperometric aqueous sol–gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sens Actuators B. 2006;115(2):626–33.

    Article  Google Scholar 

  • Sotiropoulou S, Chaniotakis NA. Tuning the sol–gel microenvironment for acetylcholinesterase encapsulation. Biomaterials. 2005;26(33):6771–9.

    Article  Google Scholar 

  • Tan XC, Tian YX, Cai PX, Zou XY. Glucose biosensor based on glucose oxidase immobilized in sol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode. Anal Bioanal Chem. 2005;381(2):500–7.

    Article  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 2001;16(1–2):121–31.

    Article  Google Scholar 

  • Tian F, Llaudet E, Dale N. Ruthenium purple-mediated microelectrode biosensors based on sol–gel film. Anal Chem. 2007;79(17):6760–6.

    Article  Google Scholar 

  • Tsai HC, Doong RA. Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol–gel materials. Biosens Bioelectron. 2007;23(1):66–73.

    Article  Google Scholar 

  • Turner APF, Karube I, Wilson GS. Biosensors: fundamentals and applications. New York (USA): Oxford University Press; 1987.

    Google Scholar 

  • Urbanova V, Etienne M, Walcarius A. One step deposition of sol–gel carbon nanotubes biocomposite for reagentless electrochemical devices. Electroanalysis. 2013a;25(1):85–93.

    Article  Google Scholar 

  • Urbanova V, Kohring GW, Klein T, Wang ZJ, Mert O, Emrullahoglu M, et al. Sol–gel approaches for elaboration of polyol dehydrogenase-based bioelectrodes. Z Phys Chem-Int J Res Phys Chem Chem Phys. 2013b;227(5):667–89.

    Google Scholar 

  • Waibel M, Schulze H, Huber N, Bachmann TT. Screen-printed bienzymatic sensor based on sol–gel immobilized Nippostrongylus brasiliensis acetylcholinesterase and a cytochrome P450BM-3 (CYP102-A1) mutant. Biosens Bioelectron. 2006;21(7):1132–40.

    Article  Google Scholar 

  • Walcarius A. Analytical applications of silica-modified electrodes – a comprehensive review. Electroanalysis. 1998;10(18):1217–35.

    Article  Google Scholar 

  • Walcarius A, Collinson MM. Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem. 2009;2:121–43.

    Article  Google Scholar 

  • Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis. 2001;13(12):983–8.

    Article  Google Scholar 

  • Wang XD, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem. 2013;85(2):487–508.

    Article  Google Scholar 

  • Wang GH, Zhang LM. A biofriendly sol–gel route to new hybrid gels for enzyme encapsulation. J Sol–Gel Sci Technol. 2014;72(1):85–91.

    Article  Google Scholar 

  • Wang XH, Han M, Bao JC, Tu WW, Dai ZH. A superoxide anion biosensor based on direct electron transfer of superoxide dismutase on sodium alginate sol–gel film and its application to monitoring of living cells. Anal Chim Acta. 2012a;717:61–6.

    Article  Google Scholar 

  • Wang ZJ, Etienne M, Poller S, Schuhmann W, Kohring GW, Mamane V, et al. Dehydrogenase-based reagentless biosensors: electrochemically assisted deposition of sol–gel thin films on functionalized carbon nanotubes. Electroanalysis. 2012b;24(2):376–85.

    Article  Google Scholar 

  • Wang ZJ, Etienne M, Urbanova V, Kohring GW, Walcarius A. Reagentless D-sorbitol biosensor based on D-sorbitol dehydrogenase immobilized in a sol–gel carbon nanotubes-poly(methylene green) composite. Anal Bioanal Chem. 2013;405(11):3899–906.

    Article  Google Scholar 

  • Wang JY, Bowie D, Zhang X, Filipe C, Pelton R, Brennan JD. Morphology and entrapped enzyme performance in inkjet-printed sol–gel coatings on paper. Chem Mater. 2014;26(5):1941–7.

    Article  Google Scholar 

  • Wollenberger U. Chapter 2 Third generation biosensors—integrating recognition and transduction in electrochemical sensors. In: Comprehensive analytical chemistry, Vol. 44. Amsterdam (The Netherlands): Elsevier; 2005. p. 65–130.

    Google Scholar 

  • Won YH, Jang HS, Kim SM, Stach E, Ganesana M, Andreescu S, et al. Biomagnetic glasses: preparation, characterization, and biosensor applications. Langmuir. 2010;26(6):4320–6.

    Article  Google Scholar 

  • Wong FCM, Ahmad M, Heng LY, Peng LB. An optical biosensor for dichlovos using stacked sol–gel films containing acetylcholinesterase and a lipophilic chromoionophore. Talanta. 2006;69(4):888–93.

    Article  Google Scholar 

  • Wu M, Lin ZH, Durkop A, Wolfbeis OS. Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide. Anal Bioanal Chem. 2004;380(4):619–26.

    Article  Google Scholar 

  • Wu JF, Xu MQ, Zhao GC. An organic sol–gel film as modifier to construct biosensor. Electroanalysis. 2009;21(2):196–200.

    Article  Google Scholar 

  • Wujcik EK, Monty CN. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2013;5(3):233–49.

    Article  Google Scholar 

  • Xu ZA, Guo ZH, Dong SJ. Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and tris(2,2′-bipyridyl)ruthenium (II) immobilized in sol–gel hybrid material. Biosens Bioelectron. 2005;21(3):455–61.

    Article  Google Scholar 

  • Xu SX, Li JL, Zhou ZL, Zhang CX. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized by sol gel thin film on a multi-wall carbon nanotube modified electrode. Anal Methods. 2014;6(16):6310–5.

    Article  Google Scholar 

  • Yang MH, Yang YH, Yang Y, Shen GL, Yu RQ. Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane. Anal Chim Acta. 2005;530(2):205–11.

    Article  Google Scholar 

  • Yang MH, Yang YH, Liu YL, Shen GL, Yu RQ. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron. 2006;21(7):1125–31.

    Article  Google Scholar 

  • Yang F, Jiao LS, Shen YF, Xu XY, Zhang YJ, Niu L. Enhanced response induced by polyelectrolyte-functionalized ionic liquid in glucose biosensor based on sol–gel organic–inorganic hybrid material. J Electroanal Chem. 2007;608(1):78–83.

    Article  Google Scholar 

  • Yang YL, Tseng TF, Yeh JM, Chen CA, Lou SL. Performance characteristic studies of glucose biosensors modified by (3-mercaptopropyl)trimethoxysilane sol–gel and non-conducting polyaniline. Sens Actuators B-Chem. 2008;131(2):533–40.

    Article  Google Scholar 

  • Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem-Int Ed. 2010;49(12):2114–38.

    Article  Google Scholar 

  • Yashina EI, Borisova AV, Karyakina EE, Shchegolikhina OI, Vagin MY, Sakharov DA, et al. Sol–gel immobilization of lactate oxidase from organic solvent: toward the advanced lactate biosensor. Anal Chem. 2010;82(5):1601–4.

    Article  Google Scholar 

  • Zejli H, de Cisneros J, Naranjo-Rodriguez I, Liu BH, Temsamani KR, Marty JL. Phenol biosensor based on sonogel-carbon transducer with tyrosinase alumina sol–gel immobilization. Anal Chim Acta. 2008a;612(2):198–203.

    Article  Google Scholar 

  • Zejli H, de Cisneros J, Naranjo-Rodriguez I, Liu BH, Temsamani KR, Marty JL. Alumina sol–gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta. 2008b;77(1):217–21.

    Article  Google Scholar 

  • Zhang JZ, Wang BQ, Xu B, Cheng GJ, Dong SJ. Amperometric quantification of polar organic solvents based on a tyrosinase biosensor. Anal Chem. 2000;72(15):3455–60.

    Article  Google Scholar 

  • Zhang LH, Xu ZA, Dong SJ. Electrogenerated chemiluminescence biosensor based on Ru(bpy)(3)(2+) and dehydrogenase immobilized in sol–gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Anal Chim Acta. 2006;575(1):52–6.

    Article  Google Scholar 

  • Zhang LM, Wang GH, Xing Z. Polysaccharide-assisted incorporation of multiwalled carbon nanotubes into sol–gel silica matrix for electrochemical sensing. J Mater Chem. 2011a;21(12):4650–6.

    Article  Google Scholar 

  • Zhang X, Ju H, Wang J. Electrochemical sensors, biosensors and their biomedical applications. London (UK): Academic Press; 2011b.

    Google Scholar 

  • Zou YJ, Xiang CL, Sun LX, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron. 2008;23(7):1010–6.

    Article  Google Scholar 

  • Zuo SH, Teng YJ, Yuan HH, Lan MB. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol–gel/polyvinyl alcohol hybrid film. Sens Actuators B. 2008;133(2):555–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Casero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Casero, E., Petit-Domínguez, M.D., Vázquez, L. (2016). Enzymatic Sol–Gel Biosensors. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_129-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_129-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics