Skip to main content

The Development of Quantum Dot/Silica Particles for Fluorescence Imaging and Medical Diagnostics

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter introduces our study on development of core–shell silica particles containing quantum dot (QD) for fluorescence imaging and medical diagnostics and is composed of six sections. The first section is Introduction. The second section describes development of methods for preparing colloid solutions of core–shell particles composed of core of nanoparticles and shell of silica. Two types of methods, both of which are sol–gel methods using raw chemicals such as sodium silicate solution and silicon alkoxide, were successfully performed for silica coating of the nanoparticles. For the method using the silicon alkoxide, an amine-free method, or a method without amine that is usually used as a catalyst for the sol–gel method, could be also developed. The third section describes fabrication of core–shell particles containing QD. QD/silica core–shell particles (QD/SiO2), multilayered core–shell particles composed of QD, silica (inner silica shell), gadolinium compounds (GdC) and silica (outer silica shell) (QD/SiO2/GdC/SiO2), and QD/SiO2 particles with immobilized Au nanoparticles (QD/SiO2/Au) were fabricated by using our amine-free method. The fourth section describes an effect of silica shell on photostability of QD. The silica shell was rigid enough to prevent O2 molecules from reaching surfaces of the QD, which maintained their photostability. In addition, the silica shell produced from silicon alkoxide stabilized their photo-property more effectively. The fifth section describes fluorescence imaging techniques using the core–shell particles containing QD. Various tissues in mouse could be imaged by detecting fluorescence emitted from the QD/SiO2 particle colloid solutions with an in vivo imaging system (IVIS). The QD/SiO2/GdC/SiO2 particle colloid solution simultaneously functioned as a fluorescent marker and high-contrast MRI agent. The colloid solution of QD/SiO2/Au particles functioned as a contrast agent for dual imaging processes based on fluorescence and X-ray absorption. The last section is on Conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ayame T, Kobayashi Y, Nakagawa T, Gonda K, Takeda M, Ohuchi N. Preparation of silica-coated AgI nanoparticles by an amine-free process and their X-ray imaging properties. J Ceram Soc Jpn. 2011;119:397–401.

    Article  Google Scholar 

  • Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N. Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci. 2011;355:312–20.

    Article  Google Scholar 

  • Basile L, Passirani C, Huynh NT, Bejaud J, Benoit JP, Puglisi G, Pignatello R. Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative. Int J Pharm. 2012;426:231–8.

    Article  Google Scholar 

  • Bogush GH, Tracy MH, Zukoski CF. Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids. 1988;104:95–106.

    Article  Google Scholar 

  • Bogush GH, Zukoski CF. Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J Colloid Interface Sci. 1991;142:1–18.

    Article  Google Scholar 

  • Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem. 1986;90:2555–60.

    Article  Google Scholar 

  • Chen C, Takezako T, Yamamoto K, Serizawa T, Akashi M. Poly(N-vinylisobutyramide)-stabilized platinum nanoparticles: synthesis and temperature-responsive behavior in aqueous solution. Colloids Surf A. 2000;169:107–16.

    Article  Google Scholar 

  • Cho G, Fung BM, Glatzhofer DT, Lee J-S, Shul Y-G. Preparation and characterization of polypyrrole-coated nanosized novel ceramics. Langmuir. 2001;17:456–61.

    Article  Google Scholar 

  • Correa-Duarte MA, Giersig M, Liz-Marzán LM. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett. 1998;286:497–501.

    Article  Google Scholar 

  • Correa-Duarte MA, Kobayashi Y, Caruso RA, Liz-Marzán LM. Photodegradation of SiO2-coated CdS nanoparticles within silica gels. J Nanosci Nanotechnol. 2001;1:95–9.

    Article  Google Scholar 

  • Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomed Nanotechnol Biol Med. 2012;8:46–53.

    Article  Google Scholar 

  • Doremus RH. Optical properties of small gold particles. J Chem Phys. 1964;40:2389–96.

    Article  Google Scholar 

  • Dubus S, Gravel JF, Drogoff BL, Nobert P, Veres T, Boudreau D. PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem. 2006;78:4457–64.

    Article  Google Scholar 

  • Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1993;88:947–50.

    Article  Google Scholar 

  • Farbman I, Lev O, Efrima S. Optical response of concentrated colloids of coinage metals in the near-ultraviolet, visible, and infrared regions. J Chem Phys. 1992;96:6477–85.

    Article  Google Scholar 

  • García-Santamaría F, Salgueiriño-Maceira V, López C, Liz-Marzán LM. Synthetic opals based on silica-coated gold nanoparticles. Langmuir. 2002;18:4519–22.

    Article  Google Scholar 

  • Gauden AJ, Phal PM, Drummond KJ. MRI safety; nephrogenic systemic fibrosis and other risks. J Clin Neurosci. 2010;17:1097–104.

    Article  Google Scholar 

  • Gonda K, Watanabe TM, Ohuchi N, Higuchi H. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem. 2010;285:2750–7.

    Article  Google Scholar 

  • Guo J, Yang W, Deng Y, Wang C, Fu S. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small. 2005;1:737–43.

    Article  Google Scholar 

  • Guo J, Yang W, Wang C, He J, Chen J. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications. Chem Mater. 2006;18:5554–62.

    Article  Google Scholar 

  • Hall SR, Davis SA, Mann S. Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route to functionalized core-shell colloids. Langmuir. 2000;16:1454–6.

    Article  Google Scholar 

  • Hardikar VV, Matijević E. Coating of nanosize silver particles with silica. J Colloid Interface Sci. 2000;221:133–6.

    Article  Google Scholar 

  • Hayat MA. Colloidal gold. San Diego: Academic; 1989.

    Google Scholar 

  • Henglein A. Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous solution. Ber Bunsen-Ges Phys Chem. 1982;86:301–5.

    Article  Google Scholar 

  • Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 1989;89:1861–73.

    Article  Google Scholar 

  • Hikage M, Gonda K, Takeda M, Kamei T, Kobayashi M, Kumasaka M, Watanabe M, Satomi S, Ohuchi N. Nano-imaging of the lymph network structure with quantum dots. Nanotechnology. 2010;21:185103.

    Article  Google Scholar 

  • Huang YF, Ma KH, Kang KB, Zhao M, Zhang ZL, Liu YX, Wen T, Wang Q, Qiu WY, Qiu D. Core-shell plasmonic nanostructures to fine-tune long “Au nanoparticle-fluorophore” distance and radiative dynamics. Colloids Surf A. 2013;421:101–8.

    Article  Google Scholar 

  • Jung SH, Kim KI, Ryu JH, Choi SH, Kim JB, Moon JH, Jin JH. Preparation of radio active core-shell type 198Au@SiO2 nanoparticles as a radiotracer for industrial process applications. Appl Radiat Isot. 2010;68:1025–9.

    Article  Google Scholar 

  • Kalantari M, Kazemeini M, Arpanaei A. Facile fabrication and characterization of amino-functionalized Fe3O4 cluster@SiO2 core-shell nanocomposite spheres Mater. Res Bull. 2013;48:2023–8.

    Article  Google Scholar 

  • Kim EY, Kim TS, Choi JY, Han J, Kim H. Multiple tracheal metastases of lung cancer: CT and integrated PET/CT findings. Clin Radiol. 2010;65:493–5.

    Article  Google Scholar 

  • Kimura K. Shape effect and quantum size effect on small metal particles. Z Phys D. 1989;11:327–32.

    Article  Google Scholar 

  • Kitajima K, Ueno Y, Suzuki K, Kita M, Ebina Y, Yamada H, Senda M, Maeda T, Sugimura K. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT scans for diagnosing ovarian cancer recurrence. Eur J Radiol. 2012;81:3557–62.

    Article  Google Scholar 

  • Kobayashi Y, Correa-Duarte MA, Liz-Marzán LM. Sol–gel processing of silica-coated gold nanoparticles. Langmuir. 2001;17:6375–9.

    Article  Google Scholar 

  • Kobayashi Y, Imai J, Nagao D, Takeda M, Ohuchi N, Kasuya A, Konno M. Preparation of multilayered silica-Gd-silica core-shell particles and their magnetic resonance images. Colloids Surf A. 2007;308:14–9.

    Article  Google Scholar 

  • Kobayashi Y, Nozawa T, Takeda M, Ohuchi N, Kasuya A. Direct silica-coating of quantum dots. J Chem Eng Jpn. 2010a;43:490–3.

    Article  Google Scholar 

  • Kobayashi Y, Nozawa T, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A. Direct coating of quantum dots with silica shell. J Sol–Gel Sci Technol. 2010b;55:79–85.

    Article  Google Scholar 

  • Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A. Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. J Colloid Interface Sci. 2011;358:329–33.

    Article  Google Scholar 

  • Kobayashi Y, Ayame T, Nakagawa T, Gonda K, Ohuchi N. X-ray imaging technique using colloid solution of AgI/silica/poly(ethylene glycol) nanoparticles Mater. Focus. 2012a;1:127–30.

    Google Scholar 

  • Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A. Synthesis of Au-silica core-shell particles by a sol–gel process. Surf Eng. 2012b;28:129–33.

    Article  Google Scholar 

  • Kobayashi Y, Nozawa T, Nakagawa T, Gonda K, Takeda M, Ohuchi N. Fabrication and fluorescence properties of multilayered core-shell particles composed of quantum dot, Gadolinium Compound, and silica. J Mater Sci. 2012c;47:1852–9.

    Article  Google Scholar 

  • Kobayashi Y, Morimoto H, Nakagawa T, Gonda K, Ohuchi N. Preparation of silica-coated Gadolinium Compound particle colloid solution and its application in imaging. Adv Nano Res. 2013a;1:159–69.

    Article  Google Scholar 

  • Kobayashi Y, Ayame T, Nakagawa T, Kubota Y, Gonda K, Ohuchi N. Preparation of AgI/silica/poly(ethylene glycol) nanoparticle colloid solution and X-ray imaging using it. ISRN Nanomater. 2013b; 2013, Article ID 670402.

    Google Scholar 

  • Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N. X-ray imaging technique using colloid solution of Au/silica/poly(ethylene glycol) nanoparticles. Mater Res Innov. 2013c;17:507–14.

    Article  Google Scholar 

  • Kobayashi Y, Inose H, Nakagawa T, Kubota Y, Gonda K, Ohuchi N. X-ray imaging technique using colloid solution of Au/silica core-shell nanoparticles. J Nanostruct Chem. 2013d;3:62.

    Article  Google Scholar 

  • Kobayashi Y, Matsudo H, Nakagawa T, Kubota Y, Gonda K, Takeda M, Ohuchi N. In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. J Sol–Gel Sci Technol. 2013e;66:31–7.

    Article  Google Scholar 

  • Kobayashi Y, Nagasu R, Shibuya K, Nakagawa T, Kubota Y, Gonda K, Ohuchi N. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications. J Nanopart Res. 2014;16:2551.

    Article  Google Scholar 

  • Kobayashi Y, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N. Preparation of Au/silica/ply(ethylene glycol) nanoparticle colloid solution and its use in X-ray imaging process. Nanocomp. 2015a;2:83–8.

    Article  Google Scholar 

  • Kobayashi Y, Matsudo H, Kubota Y, Nakagawa T, Gonda K, Ohuchi N. Preparation of silica-coated quantum dot nanoparticle colloid solutions and their application in in-vivo fluorescence imaging. J Chem Eng Jpn. 2015b;48:112–7.

    Article  Google Scholar 

  • Kobayashi Y, Matsudo H, Li T, Shibuya K, Kubota Y, Oikawa T, Oikawa T, Nakagawa T, Gonda K. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions. Appl Nanosci. 2016;6:301–307.

    Article  Google Scholar 

  • Kreibig U, Genzel L. Optical absorption of small metallic particles. Surf Sci. 1985;156:678–700.

    Article  Google Scholar 

  • Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H, Muhammed M, Scheynius A, Fadeel B. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011;253:81–93.

    Article  Google Scholar 

  • Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Ramanujam VMS, Urayama A, Vergara L, Kogan MJ, Soto C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 2010;393:649–55.

    Article  Google Scholar 

  • Lee JW, Othman MR, Eom Y, Lee TG, Kim WS, Kim J. The effects of sonification and TiO2 deposition on the microcharacteristics of the thermally treated SiO2/TiO2 spherical core-shell particles for photo-catalysis of methyl orange. Microporous Mesoporous Mater. 2008;116:561–8.

    Article  Google Scholar 

  • Lee Y-C, Chen D-Y, Dodd SJ, Bouraoud N, Koretsky AP, Krishnan KM. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials. 2012;33:3560–7.

    Article  Google Scholar 

  • Li S-Z, Xu R-K. Electrical double layers’ interaction between oppositely charged particles as related to surface charge density and ionic strength. Colloids Surf A. 2008;326:157–61.

    Article  Google Scholar 

  • Li C, Zhu J. Metal-enhanced fluorescence of OG-488 doped in Au@SiO2 core-shell nanoparticles. Mater Lett. 2013;112:169–72.

    Article  Google Scholar 

  • Lifshitz E, Dag I, Litvin I, Hodes G, Gorer S, Reisfeld R, Zelner M, Miuti H. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol–gel methods. Chem Phys Lett. 1998;288:188–96.

    Article  Google Scholar 

  • Lin YS, Wu SH, Hung Y, Chou YH, Chang C, Lin ML, Tsai CP, Mou CY. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater. 2006;18:5170–2.

    Article  Google Scholar 

  • Liu T, Li D, Zou Y, Yang D, Li H, Wu Y, Jiang M. Preparation of metal@silica core-shell particle films by interfacial self-assembly. J Colloid Interface Sci. 2010;350:58–62.

    Article  Google Scholar 

  • Liz-Marzán LM, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir. 1996;12:4329–35.

    Article  Google Scholar 

  • Lo CL, Chou MH, Lu PL, Lo IW, Chiang YT, Hung SY, Yang CY, Lin SY, Wey SP, Lo JM, Hsiue GH. The effect of PEG-5 K grafting level and particle size on tumor accumulation and cellular uptake. Int J Pharmaceut. 2013;456:424–31.

    Article  Google Scholar 

  • Ma Y, Sadoqi M, Shao J. Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int J Pharmaceut. 2012;436:25–31.

    Article  Google Scholar 

  • Marinakos SM, Shultz DA, Feldheim DL. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules. Adv Mater. 1999;11:34–7.

    Article  Google Scholar 

  • Marshall G, Kasap C. Adverse events caused by MRI contrast agents: implications for radiographers who inject. Radiography. 2012;18:132–6.

    Article  Google Scholar 

  • Melendez-Ramirez G, Castillo-Castellon F, Espinola-Zavaleta N, Meave A, Kimura-Hayama ET. Left ventricular noncompaction: a proposal of new diagnostic criteria by multidetector computed tomography. J Cardiovasc Comput Tomogr. 2012;6:346–54.

    Article  Google Scholar 

  • Menk RH, Schültke E, Hall C, Arfelli F, Astolfo A, Rigon L, Round A, Ataelmannan K, MacDonald SR, Juurlink BHJ. Gold nanoparticle labeling of cells is a sensitive method to investigate cell distribution and migration in animal models of human disease. Nanomed Nanotechnol Biol Med. 2011;7:647–54.

    Article  Google Scholar 

  • Mine E, Konno M. Secondary particle generation at low monomer concentrations in seeded growth reaction of tetraethyl orthosilicate. J Chem Eng Jpn. 2001;34:545–8.

    Article  Google Scholar 

  • Mine E, Yamada A, Kobayashi Y, Konno M, Liz-Marzán LM. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J Colloid Interface Sci. 2003;264:385–90.

    Article  Google Scholar 

  • Mojić B, Giannakopoulos KP, Cvejić Ž, Srdić VV. Silica coated ferrite nanoparticles: influence of citrate functionalization procedure on final particle morphology. Ceram Int. 2012;38:6635–41.

    Article  Google Scholar 

  • Morimoto H, Minato M, Nakagawa T, Sato M, Kobayashi Y, Gonda K, Takeda M, Ohuchi N, Suzuki N. X-ray imaging of newly-developed Gadolinium Compound/silica core-shell particles. J Sol–Gel Sci Technol. 2011;59:650–7.

    Article  Google Scholar 

  • Mulvaney P, Liz-Marzán LM, Giersig M, Ung T. Silica encapsulation of quantum dots and metal clusters. J Mater Chem. 2000;10:1259–70.

    Article  Google Scholar 

  • Nagao D, Satoh T, Konno M. A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate. J Colloid Interface Sci. 2000;232:102–10.

    Article  Google Scholar 

  • Niidome T, Ohga A, Akiyama Y, Watanabe K, Niidome Y, Mori T, Katayama Y. Controlled release of PEG chain from gold nanorods: targeted delivery to tumor. Bioorg Med Chem. 2010;18:4453–8.

    Article  Google Scholar 

  • Oh J-G, Kim H. Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell. Curr Appl Phys. 2013;13:130–6.

    Article  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev. 2012;64:246–55.

    Article  Google Scholar 

  • Pang G, Chen S, Zhu Y, Palchik O, Koltypin Y, Zaban A, Gedanken A. Preparation and characterization of monodispersed YSZ nanocrystals. J Phys Chem B. 2001;105:4647–52.

    Article  Google Scholar 

  • Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–19.

    Article  Google Scholar 

  • Rosenholm JM, Zhang J, Sun W, Gu H. Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microporous Mesoporous Mater. 2011;145:14–20.

    Article  Google Scholar 

  • Salgueiriño-Maceira V, Correa-Duarte MA. Increasing the complexity of magnetic core-shell structured nanocomposites for biological applications. Adv Mater. 2007;19:4131–44.

    Article  Google Scholar 

  • Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Gröters S, van Ravenzwaay B, Landsiedel R. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res. 2012;745:51–7.

    Article  Google Scholar 

  • Schulzendorf M, Cavelius C, Born P, Murray E, Kraus T. Biphasic synthesis of Au@SiO2 core-shell particles with stepwise ligand exchange. Langmuir. 2011;27:727–32.

    Article  Google Scholar 

  • Secchi F, Leo GD, Papini GDE, Giacomazzi F, Donato MD, Sardanelli F. Optimizing dose and administration regimen of a high-relaxivity contrast agent for myocardial MRI late gadolinium enhancement. Eur J Radiol. 2011;80:96–102.

    Article  Google Scholar 

  • Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed. 2007;46:2448–52.

    Article  Google Scholar 

  • Singh G, Song L. Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration. J Memb Sci. 2007;303:112–8.

    Article  Google Scholar 

  • Song X, Jiang N, Li Y, Xu D, Qiu G. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension. Mater Chem Phys. 2008;110:128–35.

    Article  Google Scholar 

  • Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc. 1987;109:5649–55.

    Article  Google Scholar 

  • Tago T, Hatsuta T, Nagase R, Kishida M, Wakabayashi K. Preparation of silica-coated Co-Fe3O4 nanoparticles and their magnetic properties. Kagaku Kogaku Ronbunshu. 2001;27:288–90 (in Japanese).

    Article  Google Scholar 

  • Telgmann L, Sperling M, Karst U. Determination of gadolinium-based MRI contrast agents in biological and environmental samples: a review. Anal Chim Acta. 2013;764:1–16.

    Article  Google Scholar 

  • Thomsen HS. Contrast media safety – an update. Eur J Radiol. 2011;80:77–82.

    Article  Google Scholar 

  • Torimoto T, Horibe H, Kameyama T, Okazaki K, Ikeda S, Matsumura M, Ishikawa A, Ishihara H. Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett. 2011;2:2057–62.

    Article  Google Scholar 

  • Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir. 1994;10:3427–30.

    Article  Google Scholar 

  • Ung T, Liz-Marzán LM, Mulvaney P. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir. 1998;14:3740–8.

    Article  Google Scholar 

  • Vaz AM, Serrano-Ruiz D, Laurenti M, Alonso-Cristobal P, Lopez-Cabarcos E, Rubio-Retama J. Synthesis and characterization of biocatalytic γ-Fe2O3@SiO2 particles as recoverable bioreactors. Colloids Surf B. 2014;114:11–9.

    Article  Google Scholar 

  • Verhaegh NAM, van Blaaderen A. Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir. 1994;10:1427–38.

    Article  Google Scholar 

  • Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M, Guccione S. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconj Chem. 2005;16:995–9.

    Article  Google Scholar 

  • Wang H, Nakamura H, Yao Y, Maeda H, Abe E. Effect of solvents on the preparation of silica-coated magnetic particles. Chem Lett. 2001;30:1168–9.

    Article  Google Scholar 

  • Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials. 2013;34:470–80.

    Article  Google Scholar 

  • Wu Z, Xiang H, Kim T, Chun M-S, Lee K. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J Colloid Interface Sci. 2006;304:119–24.

    Article  Google Scholar 

  • Wu Z, Liang J, Ji X, Yang W. Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloids Surf A. 2011;392:220–4.

    Article  Google Scholar 

  • Yilmaz H, Sato K, Watari K. AFM interaction study of α-alumina particle and c-sapphire surfaces at high-ionic strength electrolyte solutions. J Colloid Interface Sci. 2007;307:116–23.

    Article  Google Scholar 

  • Yoshino K, Nakamura K, Terajima Y, Kurita A, Matsuzaki T, Yamashita K, Isozaki M, Kasukawa H. Comparative studies of irinotecan-loaded polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim Biophys Acta. 2012;1818:2901–7.

    Article  Google Scholar 

  • Yu SM, Choi SH, Kim SS, Goo EH, Ji YS, Choe BY. Correlation of the R1 and R2 values of gadolinium-based MRI contrast media with the ΔHounsfield unit of CT contrast media of identical concentration. Curr Appl Phys. 2013;13:857–63.

    Article  Google Scholar 

  • Zhang Z, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B. 2000;104:1176–82.

    Article  Google Scholar 

  • Zhang L, Wang H, Zhang Z, Qin F, Liu W, Song Z. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper. Appl Surf Sci. 2011;258:1217–24.

    Article  Google Scholar 

  • Zhao Y, Tao Z, Xu Z, Tao Z, Chen B, Wang L, Li C, Chen L, Jia Q, Jia E, Zhu T, Yang Z. Toxic effects of a high dose of non-ionic iodinated contrast media on renal glomerular and aortic endothelial cells in aged rats in vivo. Toxicol Lett. 2011;202:253–60.

    Article  Google Scholar 

  • Zhou X, Kobayashi Y, Romanyuk V, Ohuchi N, Takeda M, Tsunekawa S, Kasuya A. Preparation of silica encapsulated CdSe quantum dots in aqueous solution with the improved optical properties. Appl Surf Sci. 2005;242:281–6.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Nanomedicine Molecular Science” (No. 2306) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, JSPS KAKENHI Grant Number 24310085, and the A3 Foresight Program from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kobayashi, Y., Gonda, K. (2016). The Development of Quantum Dot/Silica Particles for Fluorescence Imaging and Medical Diagnostics. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics