Skip to main content

Mechanical and Tribological Properties of the Oxide Thin Films Obtained by Sol–gel Method

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter will discuss the mechanical and tribological stability at the micro- and nanoscales of oxide films deposited by the sol–gel technique. The importance of tribological studies on sol–gel oxide films and of some works available in the literature will be shown. Particularly, films with applications in photovoltaic and photocatalyst devices compound of Cd2SnO4 and CdO+CdTiO3 films, respectively, and films obtained from their precursor solutions were evaluated by a quantitative novel method for simultaneous in situ measurement of the wear and friction evolution. The results obtained show the microtribological performance of the sol–gel oxides strongly depends on their crystalline phase, microstructure, and synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Broitman E, Flores-Ruiz FJ. Novel method for in-situ and simultaneous nanofriction and nanowear characterization of materials. J Vac Sci Technol A Vac Surf Film. 2015;33:043201. doi:10.1116/1.4921584.

    Article  Google Scholar 

  • Broitman E, Flores-Ruiz FJ, Di Giulio M, et al. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques. J Vac Sci Technol A Vac Surf Film. 2016;34:021505. doi:10.1116/1.4936080.

    Article  Google Scholar 

  • Bruncková H, Medvecký L, Hvizdoš P. Effect of substrate on microstructure and mechanical properties of sol-gel prepared (K, Na)NbO3 thin films. Mater Sci Eng B Solid State Mater Adv Technol. 2013;178:254–62. doi:10.1016/j.mseb.2012.12.003.

    Article  Google Scholar 

  • Catauro M, Bollino F, Papale F, et al. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants. Mater Sci Eng. 2014;43:375–82. doi:10.1016/j.msec.2014.07.044.

    Article  Google Scholar 

  • Díaz-Parralejo A, Ortiz AL, Caruso R. Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3 mol%Y2O2 sol-gel films. Ceram Int. 2010;36:2281–6. doi:10.1007/s11106-007-0070-0.

    Article  Google Scholar 

  • Diliegros Godines CJ, Pérez RC, Delgado GT, Ángel OZ. High transmission and low resistivity cadmium tin oxide thin films deposited by sol-gel. MRS Proc 1675:mrss14–1675–k14–04. 2014a. doi:10.1557/opl.2014.878.

    Google Scholar 

  • Diliegros Godines CJ, Torres Castanedo CG, Castanedo Pérez R, et al. Transparent conductive thin films of Cd2SnO4 obtained by the sol–gel technique and their use in a solar cell made with CdTe. Sol Energy Mater Sol Cells. 2014b;128:150–5. doi:10.1016/j.solmat.2014.05.023.

    Google Scholar 

  • Diliegros-Godines CJ, Castanedo-Pérez R, Torres-Delgado G, Zelaya-Ángel O. Structural, electrical and optical properties of tin doped cadmium oxide thin films obtained by sol–gel. J Sol-Gel Sci Technol. 2014c;70:500–5. doi:10.1007/s10971-014-3312-x.

    Google Scholar 

  • Diliegros-Godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R, et al. Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel. J Sol-Gel Sci Technol. 2015;74:114–20. doi:10.1007/s10971-014-3584-1.

    Article  Google Scholar 

  • Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional titanium dioxide nanomaterials. Chem Rev. 2014;114:9487–558. doi:10.1021/cr500201c.

    Article  Google Scholar 

  • Figueira RB, Silva CJR, Pereira EV. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res. 2015;12:1–35. doi:10.1007/s11998-014-9595-6.

    Article  Google Scholar 

  • Flores-Ruiz FJ, Enriquez-Flores CI, Chiñas-Castillo F, Espinoza-Beltrán FJ. Nanotribological performance of fullerene-like carbon nitride films. Appl Surf Sci. 2014;314:193–8. doi:10.1016/j.apsusc.2014.06.168.

    Article  Google Scholar 

  • Flores-Ruiz FJ, Diliegros Godines CJ, Hernández-García FA, et al. Mechanical and tribological properties of CdO-TiO2 films obtained by sol-gel technique. 2016.

    Google Scholar 

  • Han SM, Guyer EP, Nix WD. Extracting thin film hardness of extremely compliant films on stiff substrates. Thin Solid Films. 2011;519:3221–4. doi:10.1016/j.tsf.2010.12.167.

    Article  Google Scholar 

  • Hernández-García FA, Torres-Delgado G, Castanedo-Pérez R, Zelaya-Ángel O. Photodegradation of gaseous C6H6 using CdO + CdTiO3 and TiO2 thin films obtained by sol–gel technique. J Photochem Photobiol A Chem. 2015;310:52–9. doi:10.1016/j.jphotochem.2015.05.021.

    Article  Google Scholar 

  • Huang Y, Chang S. Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf Coat Technol. 2010;204:3147–53. doi:10.1016/j.surfcoat.2010.02.073.

    Article  Google Scholar 

  • Kaule F, Wang W, Schoenfelder S. Modeling and testing the mechanical strength of solar cells. Sol Energy Mater Sol Cells. 2014;120:441–7. doi:10.1016/j.solmat.2013.06.048.

    Article  Google Scholar 

  • Li H, Vlassak JJ. Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J Mater Res. 2011;24:1114–26. doi:10.1557/jmr.2009.0144.

    Article  Google Scholar 

  • Li H, Randall NX, Vlassak JJ. New methods of analyzing indentation experiments on very thin films. J Mater Res. 2011;25:728–34. doi:10.1557/JMR.2010.0095.

    Article  Google Scholar 

  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564.

    Article  Google Scholar 

  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. doi:10.1557/jmr.2004.19.1.3.

    Article  Google Scholar 

  • Pharr G, Oliver W. Measurement of thin film mechanical properties using nanoindentation. Mrs Bull. 1992;17:28–33. doi:10.1557/S0883769400041634.

    Article  Google Scholar 

  • Popov VL. Rigorous treatment of contact problems-Hertzian contact. In: Popov VL, editor. Contact mechanics and friction. Berlin: Springer; 2010. p. 55–70.

    Chapter  Google Scholar 

  • Sobczyk-Guzenda A, Pietrzyk B, Jakubowski W, et al. Mechanical, photocatalytic and microbiological properties of titanium dioxide thin films synthesized with the sol–gel and low temperature plasma deposition techniques. Mater Res Bull. 2013;48:4022–31. doi:10.1016/j.materresbull.2013.06.024.

    Article  Google Scholar 

  • Suriano R, Oldani V, Bianchi CL, Turri S. AFM nanomechanical properties and durability of new hybrid fluorinated sol-gel coatings. Surf Coat Technol. 2015;264:87–96. doi:10.1016/j.surfcoat.2015.01.015.

    Article  Google Scholar 

  • Torres Martínez DY, Castanedo Pérez R, Torres Delgado G, Zelaya Ángel O. Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. J Photochem Photobiol A Chem. 2012;235:49–55. doi:10.1016/j.jphotochem.2012.03.009.

    Article  Google Scholar 

  • Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat. 2009;64:327–38. doi:10.1016/j.porgcoat.2008.08.010.

    Article  Google Scholar 

  • Wu X. High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy. 2004;77:803–14. doi:10.1016/j.solener.2004.06.006.

    Article  Google Scholar 

  • Zhou B, Prorok BC. A discontinuous elastic interface transfer model of thin film nanoindentation. Exp Mech. 2009;50:793–801. doi:10.1007/s11340-009-9309-7.

    Article  Google Scholar 

  • Zhou B, Prorok BC. A new paradigm in thin film indentation. J Mater Res. 2011;25:1671–8. doi:10.1557/JMR.2010.0228.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) under Project CeMIE-Sol PY207450/25. The authors would like to thank CONACyT and DGAPA-UNAM for the postdoctoral fellowship awarded to C. J. Diliegros-Godines and F. J. Flores-Ruiz, respectively. The authors also thank to F. A. Hernádez-García for giving some of the samples analyzed in this work. Esteban Broitman acknowledges financial support from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO Mat LiU No 2009 00971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina. J. Diliegros-Godines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Diliegros-Godines, C.J., Flores-Ruiz, F.J., Castanedo-Pérez, R., Torres-Delgado, G., Broitman, E. (2016). Mechanical and Tribological Properties of the Oxide Thin Films Obtained by Sol–gel Method. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics