Skip to main content

Antimicrobial Coatings Obtained by Sol–Gel Method

  • Living reference work entry
  • First Online:

Abstract

The sol-gel method is a powerful tool to functionalize are broad range of different materials by application of inorganic coatings. One important functionalization is the antimicrobial activity. By application of an antimicrobial sol-gel coating, the coated material is able to decrease the growth of bacterial, fungi or other microorganisms. Also the complete elimination of microorganism is possible. The sol-gel approach can realize the antimicrobial properties using different concepts as – contact action, controlled release or photoactivity. In following chapter, these concepts are explained in detail and a broad overview on different useful sol-gel materials is given.

This is a preview of subscription content, log in via an institution.

References

  • Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol. 2010;205:219–23.

    Article  Google Scholar 

  • Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Stangar UL, Bergant M, Mahne D. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology. 2005;18:375709.

    Article  Google Scholar 

  • Awang AFIB, Susanti D, Taher M. Antimicrobial activity and synergic effect of Cinnamomum burmannii’s essential oil & its isolated compound (cinnamaldehyde). International conference on chemical, agricultural and medical sciences (CAMS-2013), Kuala Lumpur 29th–30th Dec 2013.

    Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JCT, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–6.

    Google Scholar 

  • Begin A, van Calsteren M-R. Antimicrobial films produced from chitosan. Int J Biol Macromol. 1999;26:63–7.

    Article  Google Scholar 

  • Berendjchi A, Khajavi R, Yazdanshenas ME. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res Lett. 2011;6:594.

    Article  Google Scholar 

  • Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterization of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004;25:1319–29.

    Article  Google Scholar 

  • Boettcher H, Jagota C, Trepte J, Kallies KH, Haufe H. Sol–gel composite films with controlled release of biocides. J Control Release. 1999;60:57–65.

    Article  Google Scholar 

  • Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A: Chem. 2005;174:156–65.

    Article  Google Scholar 

  • Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds – a critical review. Int J Antimicrob Agents. 2012;39:381–9.

    Article  Google Scholar 

  • Busenberg E, Clemency CV. Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays Clay Miner. 1973;21:213–7.

    Article  Google Scholar 

  • Busila M, Musat V, Textor T, Mahltig B. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015;5:21562–71.

    Article  Google Scholar 

  • Butterly A, Schmidt U, Wiener-Kronish J. Methicillin-resistant Staphylococcus aureus colonization, its relationship to nosocomial infection, and efficacy of control methods. Anesthesiology. 2010;113:1453–9.

    Article  Google Scholar 

  • Coman D, Oancea S, Vrinceanu N. Biofunctionalization of textile materials by antimicrobial treatments. Rom Biotechnol Lett. 2010;15:4913–21.

    Google Scholar 

  • Copello GJ, Teves S, Degrossi J, DAquino M, Desimone MF, Diaz LE. Antimicrobial activity on glass materials subject to disinfectant xerogel coating. J Ind Microbiol Biotechnol. 2006;33:343–8.

    Article  Google Scholar 

  • Daoud WA, Xin JH. Low temperature sol–gel processed photocatalytic titania coating. J Sol–Gel Sci Technol. 2004;29:25–9.

    Article  Google Scholar 

  • Darouiche RO. Antimicrobial approaches for preventing infections associated with surgical implants. Healthcare Epidemiol. 2003;36:1284–9.

    Google Scholar 

  • Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles. Colloids Surf B Biointerfaces. 2010;79:5–18.

    Article  Google Scholar 

  • Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, Sheel DW, Foster HA. Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol. 2008;79:127–33.

    Article  Google Scholar 

  • Dobmeier KP, Schoenfisch MH. Antibacterial properties of nitric oxide-releasing sol–gel microarrays. Biomacromolecules. 2004;5:2493–5.

    Article  Google Scholar 

  • Donath S, Militz H, Mai C. Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung. 2006;60:210–6.

    Google Scholar 

  • Eckardt A, Lobmann R. Der diabetische Fuss. Heidelberg: Springer Medizin Verlag; 2005.

    Google Scholar 

  • Ettel A. Weltweiter Wettlauf gegen die Killerkeime. Die Welt. 2015; 8 June. p. 12.

    Google Scholar 

  • Filipinov M, Kohn R. Determination of composition of alginates by infrared spectroscopic method. Chemické Zvesti. 1974;28:817–9.

    Google Scholar 

  • Foster MD. The relation between composition and swelling in clays. Clays Clay Miner. 1954;3:205–20.

    Article  Google Scholar 

  • Fröhlingsdorf M, Hackenbroch V, Ludwig U, Thadeusz F. Unrat im Wasser, EHEC. Der Spiegel. 2011;26:130–1.

    Google Scholar 

  • Fu G, Vary PS, Lin C-T. Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B. 2005;109:8889–98.

    Article  Google Scholar 

  • Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Text Res J. 2008;78:60–72.

    Article  Google Scholar 

  • Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–15.

    Article  Google Scholar 

  • Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77:1541–7.

    Article  Google Scholar 

  • Greenland DJ, Laby RH, Quirk JP. Adsorption of amino-acids and peptides by montmorillonite and illite. Part 1. – cation exchange and proton transfer. Trans Faraday Soc. 1965;61:2013–23.

    Article  Google Scholar 

  • Grethe T, Schulenberg D, Bidu J, Haase H, Mahltig B, Textor T, Gutmann JS. Antimicrobial finishing of textiles by complexated metal-ions. In: Proceedings of Aachen-Dresden international textile conference, 28–29 Nov 2013, Aachen.

    Google Scholar 

  • Grethe T, Bidu J, Mahltig B, Haase H. Antimicrobial finishing of textiles by modified clay minerals. Melliand Int. 2014;19:173–4.

    Google Scholar 

  • Grethe T, Haase H, Natarajan HS, Limandoko N, Mahltig B. Coating process for antimicrobial textile surfaces derived from a polyester dyeing process. J Coat Technol Res. 2015;12:1133–1141.

    Google Scholar 

  • Gupta D, Bhaumik S. Antimicrobial treatments for textiles. Indian J Fibre Text Res. 2007;32:254–63.

    Google Scholar 

  • Hang PT, Brindley GW. Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner. 1970;18:203–12.

    Article  Google Scholar 

  • Haufe H, Thron A, Fiedler D, Mahltig B, Böttcher H. Biocidal nanosol coatings. Surf Coat Int B. 2005;88:55–60.

    Article  Google Scholar 

  • Haufe H, Muschter K, Siegert J, Boettcher H. Bioactive textiles by sol–gel immobilised natural active agents. J Sol–Gel Sci Technol. 2008;45:97–101.

    Article  Google Scholar 

  • Haug S, Roll A, Schmid-Grendelmeier P, Johansen P, Wüthrich B, Kündig TM, Senti G. Coated textiles in the treatment of atopic dermatitis. Curr Probl Dermatol. 2006;33:144–51.

    Article  Google Scholar 

  • Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer H. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med. 2005;16:883–8.

    Article  Google Scholar 

  • Hench LL, West JK. The sol–gel process. Chem Rev. 1990;90:33–72.

    Article  Google Scholar 

  • Henson EJM, Smit B. Why clays swell. J Phys Chem B. 2002;106:12664–7.

    Article  Google Scholar 

  • Höfer D. Antimicrobial textiles – evaluation of their effectiveness and safety. Curr Probl Dermatol. 2006;33:42–50.

    Article  Google Scholar 

  • Ibanescu BM, Musat V, Textor T, Badilita V, Mahltig B. Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J Alloys Compd. 2014;610:244–9.

    Article  Google Scholar 

  • Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother. 2001;47:565–73.

    Article  Google Scholar 

  • Isquith AJ, Abbott EA, Walters PA. Surface-bonded antimicrobial activity of an organosilicon quarternary ammonium chloride. Appl Microbiol. 1972;24:859–63.

    Google Scholar 

  • Joshi M, Ali SW, Purwar R, Rajendran S. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res. 2009;34:295–304.

    Google Scholar 

  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972;2:23–8.

    Article  Google Scholar 

  • Kartal SN, Hwang W-J, Yamamoto A, Tanaka M, Matsumura K, Imamura Y. Wood modification with a commercial silicon emulsion: effects on boron release and decay and termite resistance. Int Biodeter Biodegr. 2007;60:189–96.

    Article  Google Scholar 

  • Klemencic D, Tomsic B, Kovac F, Zerjav M, Simoncic A, Simoncic B. Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids Surf B Biointerfaces. 2013;111:517–22.

    Article  Google Scholar 

  • Kollanoor JA, Darre MJ, Donoghue AM, Donoghue DJ, Venkitanarayanan K. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. J Appl Poult Res. 2010;19:237–44.

    Article  Google Scholar 

  • Krischer M, Mayer K-M, Schupelius G. Der Erreger als Partygast?/Suche nach der EHEC-Quelle. Focus. 2011;23:45–6.

    Google Scholar 

  • Lee, S.M., Lee B.S., Byun T.G., Song K.C. Preparation and antibacterial activity of silver-doped organic-inorganic hybrid coatings on glass substrates. Colloids & Surfaces A 2010; 355:167–171

    Google Scholar 

  • Lejars M, Margaillan A, Bressy C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 2012;112:4347–90.

    Article  Google Scholar 

  • Lim S-H, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C. 2003;C43:223–69.

    Article  Google Scholar 

  • Linstrom PJ, Mallard WG, editors. NIST chemistry WebBook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg, 20899, http://webbook.nist.gov. Retrieved 16 July 2015.

  • Macomber L, Imlay J. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A. 2009;106:8344–9.

    Article  Google Scholar 

  • Mahltig B, Haase H. Comparison of the effectiveness of different silver-containing textile products on bacteria and human cells. J Text Inst. 2012;103:1262–6.

    Article  Google Scholar 

  • Mahltig B, Haufe H. Biozidhaltige Nanosole zur Veredlung von weichen und temperaturempfindlichen Materialien. Farbe Lack. 2010;116(3):27–30.

    Google Scholar 

  • Mahltig B, Textor T. Nanosols and Textiles. Singapore: World Scientific. 2008

    Google Scholar 

  • Mahltig B, Textor T. Silver containing sol–gel coatings on polyamide fabrics as antimicrobial finish – description of a technical application process for wash permanent antimicrobial effect. Fibers Polym. 2010;11:1152–8.

    Article  Google Scholar 

  • Mahltig B, Fiedler D, Böttcher H. Antimicrobial sol–gel coatings. J Sol–Gel Sci Technol. 2004;32:219–22.

    Article  Google Scholar 

  • Mahltig B, Haufe H, Böttcher H. Functionalization of textiles by inorganic sol–gel coatings. J Mater Chem. 2005;15:4385–98.

    Article  Google Scholar 

  • Mahltig B, Gutmann E, Meyer DC, Reibold M, Dresler B, Günther K, Faßler D, Böttcher H. Solvothermal preparation of metalized titania sols for photocatalytic and antimicrobial coatings. J Mater Chem. 2007;17:2367–74.

    Article  Google Scholar 

  • Mahltig B, Swaboda C, Roessler A, Böttcher H. Functionalising wood by nanosol application. J Mater Chem. 2008;18:3180–92.

    Article  Google Scholar 

  • Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H. Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol–Gel Sci Technol. 2009;51:204–14.

    Article  Google Scholar 

  • Mahltig B, Haufe H, Eisbein M. Nanosols for wood coatings and restoration of old wood – Nanosol: rivestimenti per legno e restauro del legno antico. Pitture e Vernici – Eur Coat. 2011a;87(2):53–65.

    Google Scholar 

  • Mahltig B, Reibold M, Gutmann E, Textor T, Gutmann J, Haufe H, Haase H. Preparation of silver nanoparticles suitable for textile finishing processes to produce textiles with strong antibacterial properties against different bacteria types. Z Naturforsch – Section B J Chem Sci. 2011b;66:905–16.

    Article  Google Scholar 

  • Mahltig B, Soltmann U, Haase H. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications. Mater Sci Eng C. 2013;33:979–83.

    Article  Google Scholar 

  • Mai C, Militz H. Modification of wood with silicon compounds, inorganic silicon compounds and sol–gel systems: a review. Wood Sci Technol. 2004a;37:339–48.

    Article  Google Scholar 

  • Mai C, Militz H. Modification of wood with silicon compounds treatment systems based on organic silicon compounds – a review. Wood Sci Technol. 2004b;37:453–61.

    Article  Google Scholar 

  • Marini M, Bondi M, Iseppi R, Toselli M, Pilati F. Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol–gel process. Eur Polym J. 2007a;43:3621–8.

    Article  Google Scholar 

  • Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F. Antibacterial activity of plastics coated with silver-doped organic–inorganic hybrid coatings prepared by sol–gel processes. Biomacromolecules. 2007b;8:1246–54.

    Article  Google Scholar 

  • McDonnell AMP, Beving D, Wang A, Chen W, Yan Y. Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv Funct Mater. 2005;15:336–40.

    Article  Google Scholar 

  • Montegut D, Indictor N, Koestler RJ. Fungal deterioration of cellulosic textiles. Int Biodeterior. 1991;28:209–26.

    Article  Google Scholar 

  • Nablo BJ, Chen T-Y, Schoenfisch MH. Sol–gel derived nitric-oxide releasing materials that reduce bacterial adhesion. J Am Chem Soc. 2001;123:9712–3.

    Article  Google Scholar 

  • Nakashima T, Matsuo M. Relationship between antimicrobial activity and deodorant efficacy for cotton socks treated with metal. Biocontrol Sci. 2001;6:1–8.

    Article  Google Scholar 

  • Nan L, Liu Y, Lü M. Study on antimicrobial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci Mater Med. 2008;19:3057–62. 19.

    Article  Google Scholar 

  • Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. Titania and silver-titania composite films on glass – potent antimicrobial coatings. J Mater Chem. 2007;17:95–104.

    Article  Google Scholar 

  • Papageorgiou SK, Kouvelos E, Fawas E, Sapalidis A, Romanos G, Katsaros F. Metal–carboxylate interactions in metal-alginate complexes studied with FTIR pectroscopy. Carbohydr Res. 2010;345:469–73.

    Article  Google Scholar 

  • Pham T-D, Lee B-K, Nguyen M-V, Lee C-H. Germicide feasibility of TiO2/glass fiber and Ag-TiO2/glass fiber photocatalysts. Adv Mater Res. 2012;518:864–8.

    Article  Google Scholar 

  • Podbielska H, Ulatowska-Jarza A. Sol–gel technology for biomedical engineering. Bull Pol Acad Sci. 2005;53:261–70.

    Google Scholar 

  • Privett BJ, Youn J, Hong SA, Lee J, Han J, Shin JH, Schoenfisch MH. Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir. 2011;27:9597–601.

    Article  Google Scholar 

  • Qu J, Lu X, Li D, Ding Y, Leng Y, Wenig J, Qu S, Feng B, Watari F. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol–gel method. J Biomed Mater B. 2011;97B:40–8.

    Article  Google Scholar 

  • Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci. 2002;62:373–80.

    Article  Google Scholar 

  • Rabea EI, Badawy E-T, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.

    Article  Google Scholar 

  • Rajagopal G, Maruthamuthu S, Mohanan S, Palaniswamy N. Biocidal effects of photocatalytic semiconductor TiO2. Colloids Surf B Biointerfaces. 2006;51:107–11.

    Article  Google Scholar 

  • Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005;100:80–4.

    Article  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Zamarreno CR, Arregui FJ, Matias IR. An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles. Nanoscale Res Lett. 2011;6:305.

    Article  Google Scholar 

  • Saji VS, Thomas J. Nanomaterials for corrosion control. Curr Sci. 2007;92:51–5.

    Google Scholar 

  • Sanchez-Martin MJ, Rodriguez-Cruz MS, Andrades MS, Sanchez-Camazano M. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Appl Clay Sci. 2006;3:216–28.

    Article  Google Scholar 

  • Sathianarayanan MP, Bhat NV, Kokate SS, Walunj VE. Antibacterial finish for cotton fabric from herbal products. Indian J Fibre Text Res. 2010;35:50–8.

    Google Scholar 

  • Sauvet G, Dupond S, Kazmierski K, Chojnowski J. Biocidal polymers active by contact. J Appl Polym Sci. 2000;75:1005–12.

    Article  Google Scholar 

  • Sayilkan F, Asiltürk M, Kiraz N, Burunkaya E, Arpac E, Sayilkan H. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate. J Hazard Mater. 2009;162:1309–16.

    Article  Google Scholar 

  • Semeykina AL, Skulachev VP. Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles. FEBS Lett. 1990;269:69–72.

    Article  Google Scholar 

  • Shrestha R, Joshi DR, Gopali J, Piya S. Oligodynamic action of silver, copper and brass on enteric bacteria isolated from water of Kathmandu Valley. Nepal J Sci Technol. 2009;10:189–93.

    Google Scholar 

  • Simoncic B, Tomsic B. Structures of novel antimicrobial agents for textiles – a review. Text Res J. 2010;80:1721–37.

    Article  Google Scholar 

  • Singh G, Singh OP, Maurya S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth Charact Mater. 2002;45:75–81.

    Article  Google Scholar 

  • Skorb EV, Shchukin DG, Möhwald H, Sviridov DV. Photocatalytically-active and photocontrollable coatings based on titania-loaded hybrid sol–gel films. J Mater Chem. 2009;19:4931–7.

    Article  Google Scholar 

  • Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256:6083–9.

    Article  Google Scholar 

  • Strzemiecka B, Kasperkowiak M, Lozynski M, Paukszta D, Voelkel A. Examination of zeolites as fragrance carriers. Microporous Mesoporous Mater. 2012;161:106–14.

    Article  Google Scholar 

  • Talebian N, Nilforoushan MR, Zargar EB. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO2 nanocomposite thin films. Appl Surf Sci. 2011;258:547–55.

    Article  Google Scholar 

  • Tanno F, Saka S, Yamamoto A, Takabe K. Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol–gel process. Holzforschung. 1998;52:365–70.

    Article  Google Scholar 

  • Tatar P, Kiraz N, Asiltürk M, Sayilkan F, Sayilkan H, Arpac E. Antibacterial thin films on glass substrate by sol–gel process. J Inorg Organomet Polym Mater. 2007;17:525–33.

    Article  Google Scholar 

  • Thilagavathi G, Kannaian T. Application of Prickly Chaff leaves as herbal antimicrobial finish for cotton fabric used in healthcare textiles. Nat Prod Radiance. 2008;7:330–4.

    Google Scholar 

  • Tomsic B, Simoncic B, Orel B, Cerne L, Tavcer PF, Zorko M, Jerman I, Vilcnik A, Kovac J. Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol–gel Sci Technol. 2008;47:44–57.

    Article  Google Scholar 

  • Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym. 2009;75:618–26.

    Article  Google Scholar 

  • Trapalis CC, Kokkoris M, Perdikakis G, Kordas G. Study of antibacterial composite Cu/SiO2 coatings. J Sol–gel Sci Technol. 2003;26:1213–8.

    Article  Google Scholar 

  • Videla HA. Prevention and control of biocorrosion. Int Biodeter Biodegr. 2002;49:259–70.

    Article  Google Scholar 

  • Wang CX, Chen SL. Surface treatment of cotton using β-cyclodextrins sol–gel method. Applied surface science. 2006;252:6348–6352.

    Google Scholar 

  • Yossa N, Patel J, Macarisin D, Millner P, Murph C, Bauchan G, Matin LY. Antibacterial activity of cinnamaldehyde and sporan against Escherichia coli O157:H7 and Salmonella. J Food Process Preserv. 2014;38:749–57.

    Article  Google Scholar 

  • Yu JC, Ho W, Lin J, Yip H, Wong PK. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol. 2003;37:2296–301.

    Article  Google Scholar 

Download references

Acknowledgments

For the funding of electromicroscopic equipment, the authors acknowledge very gratefully the program FH-Basis of the German federal country of North Rhine-Westphalia NRW. We thank also Laura Keitel for helping with literature research on antimicrobial testing methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mahltig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Mahltig, B., Grethe, T., Haase, H. (2016). Antimicrobial Coatings Obtained by Sol–Gel Method. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_102-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics