Skip to main content

Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

The “marine animal forests” are among the most diverse ecosystems in the Biosphere. However, exhaustive biodiversity assessment of these communities has been so far elusive. The real extent of biodiversity and its temporal and spatial variability patterns remain unknown for most animal forests, mainly due to the inability of traditional taxonomy methods to cope with such degree of diversity and structural complexity.

The development of metabarcoding techniques has revolutionized biomonitoring. Using this approach, thousands of species present in any environmental sample can be detected by high-throughput DNA sequencing and identified using public databases. Though initially limited to homogeneous substrates such as plankton or sediments, the applications of metabarcoding have been recently extended to communities on heterogeneous complex hard bottom substrates.

Here we present novel metabarcoding protocols, based on the use of short fragments of 18S rRNA or cytochrome c oxidase I genes as genetic markers. We aim to develop methods for robust, reproducible eukaryotic biodiversity assessment of structurally complex communities such as marine animal forests, allowing characterization of communities living on hard-bottom substrates or other marine benthic ecosystems.

We propose some guidelines focusing on sampling techniques, sample preprocessing, DNA extraction, selection of genetic markers, and bioinformatic pipelines, including steps such as sequence filtering (removal of low quality reads), clustering algorithms for delimiting molecular operational taxonomic units, and automated taxonomic assignment using reference databases. We expect these recommendations will help marine ecologists to become familiar with the paradigm shift that metabarcoding represents in the way marine ecosystems will be monitored and managed in the next future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.

    Google Scholar 

  • Aylagas E, Borja A, Irigoien X, Rodriguez-Ezpeleta N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front Mar Sci. 2016;3:96.

    Google Scholar 

  • Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.

    Article  CAS  Google Scholar 

  • Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. OBITOOLS: a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour. 2016;16:176–82.

    Article  CAS  PubMed  Google Scholar 

  • Chariton AA, Court LN, Hartley DM, Colloff MJ, Hardy CM. Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Front Ecol Environ. 2010;8:233–8.

    Article  Google Scholar 

  • Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS One. 2013;8:e70837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coissac E. OligoTag: a program for designing sets of tags for next-generation sequencing of multiplexed samples. Methods Mol Biol. 2012;888:13–31.

    Article  PubMed  Google Scholar 

  • Crampton-Platt A, Yu DW, Zhou X, Vogler AP. Mitochondrial metagenomics: letting the genes out of the bottle. Gigascience. 2016;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM. The ecologist’s field guide to sequence based identification of biodiversity. Methods Ecol Evol. 2016;7:1008–18.

    Google Scholar 

  • Cristescu ME. From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol. 2014;29:566–71.

    Article  PubMed  Google Scholar 

  • Dawson MN, Raskoff KA, Jacobs DK. Field preservation of marine invertebrate tissue for DNA analyses. Mol Mar Biol Biotechnol. 1998;7:145–52.

    CAS  PubMed  Google Scholar 

  • Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett. 2014;10:20140562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deiner K, Altermatt F, Hurlbert A, Jetz W, Reilly S, Thayer V, Pfrender M, Hawkins C, Bagley M, Courtney G, et al. Transport distance of invertebrate environmental DNA in a natural river. PLoS One. 2014;9:e88786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte CM. Marine biodiversity and ecosystem services: an elusive link. J Exp Mar Bio Ecol. 2000;250:117–31.

    Article  PubMed  Google Scholar 

  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egge E, Bittner L, Andersen T, Audic S, de Vargas C, Edvardsen B. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS One. 2013;8:e74371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichmiller JJ, Miller LM, Sorensen PW. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol Ecol Resour. 2016;16:56–68.

    Article  CAS  PubMed  Google Scholar 

  • Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass–sequence relationships with an innovative metabarcoding protocol. PLoS One. 2015;10:e0130324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erséus C, Gusarov VI, Edwards ME, Johnsen A, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012;21:1821–33.

    Article  CAS  PubMed  Google Scholar 

  • Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol Ecol Resour. 2016;16:29–41.

    Article  CAS  PubMed  Google Scholar 

  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F. An in silico approach for the evaluation of DNA barcodes. BMC Genomics. 2010;11:434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS  PubMed  Google Scholar 

  • Fonseca VG, Carvalho GR, Nichols B, Quince C, Johnson HF, Neill SP, Lambshead JD, Thomas WK, Power DM, Creer S. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol Biogeogr. 2014;23:1293–302.

    Article  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61.

    Article  CAS  PubMed  Google Scholar 

  • Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS One. 2015;10:e139633.

    Article  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One. 2011;6:e17497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Jiang R, Chen T. Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics. 2011;27:611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Ratnasingham S, Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci. 2003;270(Suppl):96–9.

    Article  Google Scholar 

  • Hino A, Maruyama H, Kikuchi T. A novel method to assess the biodiversity of parasites using 18S rDNA Illumina sequencing; parasitome analysis method. Parasitol Int. 2016;65:572–5.

    Google Scholar 

  • Jamieson AJ, Boorman B, Jones DO. Deep-sea benthic sampling. In: Eleftheriou A, editor. Methods for the study of marine benthos. Oxford: Wiley; 2013. p. 285–347.

    Chapter  Google Scholar 

  • Lallias D, Hiddink JG, Fonseca VG, Gaspar JM, Sung W, Neill SP, Barnes N, Ferrero T, Hall N, Lambshead PJD, et al. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME J. 2015;9:1208–21.

    Article  PubMed  Google Scholar 

  • Lejzerowicz F, Esling P, Pillet LL, Wilding TA, Black KD, Pawlowski J. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci Rep. 2015;5:13932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci. 2015;112:2076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang X, Xie L, Tan M, Li Z, Su X, Zhang H, Misof B, Kjer KM, Tang M, et al. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol Ecol Resour. 2016;16:470–9.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi N, Slater GF, Fulthorpe RR. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can J Microbiol. 2011;57:623–8.

    Article  CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S, Metzker M, Hamady M, Walker J, Harris J, Gold N, Knight R, Pace N, Liu Z, et al. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48:443–53.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell JL, Kelly RP, Lowell NC, Port JA. Indexed PCR primers induce template-specific bias in large-scale DNA sequencing studies. PLoS One. 2016;11:e0148698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens H, Wagner H. vegan: community ecology package. 2016; R package version 2.3-3. http://CRAN.R-project.org/package=vegan

  • Pawlowski J, Lejzerowicz F, Esling P. Next-generation environmental diversity surveys of foraminifera: preparing the future. Biol Bull. 2014;227:93–106.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, Esling P. Protist metabarcoding and environmental biomonitoring: time for change. Eur J Protistol. 2016;55:12–25.

    Google Scholar 

  • Pearman JK, Irigoien X. Assessment of zooplankton community composition along a depth profile in the central Red Sea. PLoS One. 2015;10:e0133487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearman JK, Anlauf H, Irigoien X, Carvalho S. Please mind the gap – visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar Environ Res. 2016;118:20–30.

    Article  CAS  PubMed  Google Scholar 

  • Pegard A, Miquel C, Valentini A, Coissac E, Bouvier F, François D, Taberlet P, Engel E, Pompanon F. Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces. J Agric Food Chem. 2009;57:5700–6.

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article  CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system. Mol Ecol Notes. 2007;7:355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. EcoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011;39:e145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Bramanti L, Broglio E, Gili J-M. Trophic impact of long-lived species indicated by population dynamics in the short-lived hydrozoan Eudendrium racemosum. Mar Ecol Prog Ser. 2012;467:97–111.

    Article  CAS  Google Scholar 

  • Sanders H. Marine benthic diversity: a comparative study. Am Nat. 1968;102:243–82.

    Article  Google Scholar 

  • Schmidt PA, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I. Illumina metabarcoding of a soil fungal community. Soil Biol Biochem. 2013;65:128–32.

    Article  CAS  Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, Richards TA. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50.

    Article  CAS  PubMed  Google Scholar 

  • Thomas AC, Deagle BE, Paige Eveson J, Harsch CH, Trites AW. Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material. Mol Ecol Resour. 2016;16:714–26.

    Article  CAS  PubMed  Google Scholar 

  • Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 2016;25:929–42.

    Article  CAS  PubMed  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.

    Article  PubMed  Google Scholar 

  • Wangensteen OS, Guardiola M, Palacín C, Turon X. DNA metabarcoding of marine hard-bottom communities using 18S and COI. Genome. 2015;58:294.

    Google Scholar 

  • Wares J, Pappalardo P. Can theory improve the scope of quantitative metazoan metabarcoding? Diversity. 2016;8:1.

    Article  Google Scholar 

  • Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol Ecol Resour. 2011;11:236–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank two anonymous reviewers and the editors of the present volume for their helpful suggestions, which significantly improved the manuscript. This work has been funded by project Metabarpark from the Spanish National Parks Autonomous Agency (OAPN 1036/2013) and project ChallenGen CTM2013-48163 of the Spanish Government. OSW is currently funded by project SeaDNA, NE/N005759/1 grant from the Natural Environment Research Council of the UK (NERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Owen S. Wangensteen or Xavier Turon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Wangensteen, O.S., Turon, X. (2016). Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics