Skip to main content

Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests

  • Living reference work entry
  • First Online:
Marine Animal Forests

Abstract

Competition, predation, and facilitation mechanisms are the major drivers of biodiversity and community structure in marine benthic ecosystems. Habitat complexity is a determining factor of faunal richness and biodiversity in these communities. The structure of marine animal forests is originated by living three-dimensional aggregations of modular animals. The persistence of these systems through time relies on the growth of existing individuals and the recruitment of new ones. Therefore, the present and future health of these valuable ecosystems may depend on the reproductive success of a few vulnerable species which might often be accomplished only under strict or very narrow conditions. Reproductive patterns of ecosystem engineers play a crucial role in determining the structure, function, and distribution of all kinds of marine animal forests at different scales. The reproductive strategies of these habitat-forming species may vary considerably. Though most ecosystem-engineering species are, to some extent, able to reproduce asexually, their sexual reproductive strategies are diverse. Dispersal ability strategies are selected as an adaptation to spatial heterogeneity and habitat stability and are important factors for the resilience of the ecosystems. Dispersal traits are essential for both small-scale population structuring and connectivity among distant populations. Disturbed habitats may be promptly recolonized by species with long-distance dispersal capability, but recolonization by species with low dispersal capacity might limit the full restoration of a disturbed ecosystem, especially in fragmented habitats with reduced connectivity between patches. Due to the lack of knowledge on the reproductive cycles of many marine invertebrates, the response of animal forest ecosystems to global change is, in general, unpredictable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams A, Dahlgren C, Kellison G, Kendall M, Layman C, Ley J, Nagelkerken I, Serafy J. Nursery function of tropical back-reef systems. Mar Ecol Prog Ser. 2006;318:287–301.

    Article  Google Scholar 

  • Adjeroud M, GuĂ©rĂ©cheau A, Vidal-Dupiol J, Flot J-F, Arnaud-Haond S, Bonhomme F. Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol. 2014;161:531–41.

    Article  Google Scholar 

  • Ambroso S, Gori A, Dominguez-CarriĂł C, Gili J-M, Berganzo E, TeixidĂł N, Greenacre M, Rossi S. Spatial distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum in coastal bottoms (Cap de Creus, northwestern Mediterranean Sea). Mar Biol. 2013;160:3059–70.

    Article  Google Scholar 

  • Ayre DJ, Hughes TP. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution. 2000;54:1590.

    Article  CAS  PubMed  Google Scholar 

  • Babcock R, Mundy C, Keesing J, Oliver J. Predictable and unpredictable spawning events: in situ behavioural data from free-spawning coral reef invertebrates. Invertebr Reprod Dev. 2011;22:213–27.

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Ann Rev Ecol Evol Syst. 2009;40:551–71.

    Article  Google Scholar 

  • Barnes RSK, Calow PP, Olive PJW, Golding DW, Spicer JI. The invertebrates: a synthesis. Oxford, UK: Wiley; 2009.

    Google Scholar 

  • Barthel D. Fish eggs and pentacrinoids in Weddell Sea hexactinellids: further examples for the structuring role of sponges in Antarctic benthic ecosystems. Polar Biol. 2014;17:91–4.

    Article  Google Scholar 

  • Bosch I, Colwell SJ, Pearse JS, Pearse VB. Nutritional flexibility in yolk-rich planktotrophic larvae of an Antarctic echinoderm. Antarct J US. 1991;26:168–70.

    Google Scholar 

  • Brooke S, Järnegren J. Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord. Norway Mar Biol. 2013;160:139–53.

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 2010;31:21–50.

    Article  Google Scholar 

  • CalderĂłn I, Ortega N, Duran S, Becerro M, Pascual M, Turon X. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Mol Ecol. 2007;16:1799–810.

    Article  PubMed  Google Scholar 

  • Clarke A. Reproduction in the cold: Thorson revisited. Invertebr Reprod Dev. 1992;22:175–83.

    Article  Google Scholar 

  • Coma R, Ribes M, Zabala M, Gili J-M. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser. 1996;117:173–83.

    Article  Google Scholar 

  • Connell JH. Population ecology of reef-building corals. In: Jones OA, Endean R, editors. Biology and geology of coral reefs. New York: Academic; 1973. p. 205–45.

    Chapter  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr. 1997;67:461–88.

    Article  Google Scholar 

  • Crow JF, Kimura M. Evolution in sexual and asexual populations. Am Nat. 1965;99:439–50.

    Article  Google Scholar 

  • Dahl M. Conservation genetics of the cold-water coral Lophelia pertusa (Scleractinia). Doctoral thesis, University of Gothenburg. 2013.

    Google Scholar 

  • Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, CĂ´tĂ© IM. Evaluating life-history strategies of reef corals from species traits. Ecol Lett. 2012;15:1378–86.

    Article  PubMed  Google Scholar 

  • Davies AJ, Duineveld GC, Lavaleye MS, Bergman MJ, van Haren H, Roberts JM. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr. 2009;54:620–9.

    Article  Google Scholar 

  • Dupont S, Dorey N, Thorndyke M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci. 2010;89:182–5.

    Article  Google Scholar 

  • Fernández R, Lemer S, McIntyre E, Giribet G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar Ecol. 2015;36:701–15.

    Article  Google Scholar 

  • Fiorillo I, Rossi S, Alva V, Gili J-M, LĂłpez-González PJ. Seasonal cycle of sexual reproduction of the Mediterranean soft coral Alcyonium acaule (Anthozoa, Octocorallia). Mar Biol. 2012;160:719–28.

    Article  Google Scholar 

  • Flot J-F, Dahl M, AndrĂ© C. Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes. 2013;6:144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster NL, Baums IB, Mumby PJ. Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. J Anim Ecol. 2007;76:384–91.

    Article  PubMed  Google Scholar 

  • Foster NL, Baums IB, Sanchez JA, Paris CB, Chollett I, Agudelo CL, Vermeij MJA, Mumby PJ. Hurricane-driven patterns of clonality in an ecosystem engineer: the Caribbean coral Montastraea annularis. PLoS One. 2013;8, e53283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991.

    Book  Google Scholar 

  • Gallmetzer I, Haselmair A, Velimirov B. Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci. 2010;90:1–10.

    Article  Google Scholar 

  • GarcĂ­a-Charton JA, PĂ©rez-Ruzafa A. Correlation between habitat structure and a rocky reef fish assemblage in the Southwest Mediterranean. Mar Ecol. 1998;19:111–28.

    Article  Google Scholar 

  • GarcĂ­a-Cisneros A, PĂ©rez-Portela R, Wangensteen OS, Campos-Canet M, PalacĂ­n C. Hope springs eternal in the starfish gonad: preserved potential for sexual reproduction in a single-clone population of fissiparous starfish. Hydrobiologia. 2017;787:291–305.

    Article  Google Scholar 

  • Gili J-M, Coma R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol. 1998;13:316–21.

    Article  CAS  PubMed  Google Scholar 

  • Gori A, Linares C, Rossi S, Coma R, Gili J-M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar Biol. 2007;151:1571–84.

    Article  Google Scholar 

  • Harrison R, Babcock R, Bull G, Oliver J, Wallace C, Willis B. Mass spawning in tropical reef corals. Science. 1984;223:1186–9.

    Article  CAS  PubMed  Google Scholar 

  • Hazan Y, Wangensteen OS, Fine M. Tough as a rock-boring urchin: adult Echinometra sp. EE from the Red Sea show high resistance to ocean acidification over long-term exposures. Mar Biol. 2014;161:2531–45.

    Article  CAS  Google Scholar 

  • Hellberg ME. Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution. 1994;48:1829–54.

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E. The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol. 2005;146:293–9.

    Article  Google Scholar 

  • Highsmith RC. Reproduction by fragmentation in corals. Mar Ecol Prog Ser. 1982;7:207–26.

    Article  Google Scholar 

  • Hoegh-Guldberg O, Manahan D. Coulometric measurement of oxygen consumption during development of marine invertebrate embryos and larvae. J Exp Biol. 1995;198:19–30.

    CAS  PubMed  Google Scholar 

  • Hughes RN. Lessons in modularity: the evolutionary ecology of colonial invertebrates. Sci Mar. 2007;69:169–79.

    Article  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol. 2005;20:380–6.

    Article  PubMed  Google Scholar 

  • Jackson JBC. Modes of dispersal of clonal benthic invertebrates: consequences for species’ distributions and genetic structure of local populations. Bull Mar Sci. 1986;39:588–606.

    Google Scholar 

  • Jaeckle WB, Manahan DT. Feeding by a “nonfeeding” larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens. Mar Biol. 1989;103:87–94.

    Article  CAS  Google Scholar 

  • Johannesson K. The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol. 1988;99:507–13.

    Article  Google Scholar 

  • Jokiel PL. Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour. 1990;14:66–73.

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.

    Article  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Van Oppen MJ, Willis BL. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs. 2009;28:307–25.

    Article  Google Scholar 

  • Kahng SE, Benayahu Y, Lasker HR. Sexual reproduction in octocorals. Mar Ecol Prog Ser. 2011;443:265–83.

    Article  Google Scholar 

  • Kawecki TJ. Adaptation to marginal habitats. Ann Rev Ecol Evol Syst. 2008;39:321–42.

    Article  Google Scholar 

  • Kempf SC, Hadfield MG. Planktotrophy by the lecithotrophic larvae of a nudibranch, Phestilla sibogae (Gastropoda). Biol Bull. 1985;169:119–30.

    Article  Google Scholar 

  • Kroon FJ, de Graaf M, Liley NR. Social organisation and competition for refuges and nest sites in Coryphopterus nicholsii (Gobiidae), a temperate protogynous reef fish. Environ Biol Fishes. 2000;57:401–11.

    Article  Google Scholar 

  • Kyle CJ, Boulding EG. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol. 2000;137:835–45.

    Article  CAS  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, Dahl MP, Lundälv T, Brooke S. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One. 2014;9, e102222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Goff-Vitry MC, Pybus OG, Rogers AD. Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol. 2004;13:537–49.

    Article  PubMed  Google Scholar 

  • Lirman D. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. J Exp Mar Biol Ecol. 2000;251:41–57.

    Article  CAS  PubMed  Google Scholar 

  • Lively CM, Johnson SG. Brooding and the evolution of parthenogenesis: strategy models and evidence from aquatic invertebrates. Proc Biol Sci. 1994;256:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J. Evolution in sexual and asexual populations. Am Nat. 1968;102:469–73.

    Article  Google Scholar 

  • Maynard Smith J. What use is sex? J Theor Biol. 1971;30:319–35.

    Article  Google Scholar 

  • McIntire EJB, Fajardo A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 2014;201:403–16.

    Article  PubMed  Google Scholar 

  • Mladenov PV, Carson SF, Walker CW. Reproductive ecology of an obligately fissiparous population of the sea star Stephanasterias albula Stimpson. J Exp Mar Biol Ecol. 1986;96:155–75.

    Article  Google Scholar 

  • O Foighil D, Smith MJ. Phylogeography of an asexual marine clam complex, Lasaea, in the northeastern Pacific based on cytochrome oxidase III sequence variation. Mol Phylogenet Evol. 1996;6:134–42.

    Article  CAS  PubMed  Google Scholar 

  • Orejas C, Gili JM, LĂłpez-González PJ, Hasemann C, Arntz WE. Reproduction patterns of four Antarctic octocorals in the Weddell Sea: an inter-specific, shape, and latitudinal comparison. Mar Biol. 2007;150:551–63.

    Article  Google Scholar 

  • Pearse JS. Cold-water echinoderms break Thorson’s rule. In: Young CM, Eckelbarger KJ, editors. Reproduction, larval biology and recruitment of the deep-sea. New York: Columbia University Press; 1994. p. 26–43.

    Google Scholar 

  • Pearse JS, McClary DJ, Sewell MA, Austin WC, Perez-Ruzafa A, Byrne M. Simultaneous spawning of six species of echinoderms in Barkley Sound, British Columbia. Int J Invertebr Reprod Dev. 1988;14:279–88.

    Article  Google Scholar 

  • Pearse JS, McClintock JB, Bosch I. Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool. 1991;31:65–80.

    Article  Google Scholar 

  • PĂ©rez-Portela R, Cerro-Gálvez E, Taboada S, Tidu C, Campillo-Campbell C, Mora J, Riesgo A. Lonely populations in the deep: genetic structure of red gorgonians at the heads of submarine canyons in the north-western Mediterranean Sea. Coral Reefs. 2016;35:1013–26.

    Article  Google Scholar 

  • Poulin E, Feral J-P. Why are there so many species of brooding Antarctic echinoids? Evolution. 1996;50:820–31.

    Article  Google Scholar 

  • Quintanilla E, Gili J-M, LĂłpez-González P, Tsounis G, Madurell T, Fiorillo I, Rossi S. Sexual reproductive cycle of the epibiotic soft coral Alcyonium coralloides (Octocorallia, Alcyonacea). Aquat Biol. 2013;18:113–24.

    Article  Google Scholar 

  • Rasheed MA. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J Exp Mar Biol Ecol. 2004;310:13–45.

    Article  Google Scholar 

  • Rice AL, Billett DS, Fry J, John AW, Lampitt RS, Mantoura RF, Morris RJ. Seasonal deposition of phytodetritus to the deep-sea floor. Proc Roy Soc Edinb B. 1986;88:265–79.

    Google Scholar 

  • Richmond RH. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol. 1987;93:527–33.

    Article  Google Scholar 

  • Richmond RH. Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C, editor. Life and death of coral reefs. New York: Chapman & Hall; 1997. p. 175–97.

    Chapter  Google Scholar 

  • Richmond RH, Hunter CL. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser. 1990;60:185–203.

    Article  Google Scholar 

  • Rivkin RB, Bosch I, Pearse JS, Lessard EJ. Bacterivory: a novel feeding mode for asteroid larvae. Science. 1986;233:1311–4.

    Article  CAS  PubMed  Google Scholar 

  • Roark EB, Guilderson TP, Flood-Page S, Dunbar RB, Ingram BL, Fallon SJ, McCulloch M. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophys Res Lett. 2005;32, L04606.

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science. 2006;312:543–7.

    Article  CAS  PubMed  Google Scholar 

  • Rossi S. The destruction of the “animal forests” in the oceans: Towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.

    Article  Google Scholar 

  • Rossi S, Gili J-M. Reproductive features and gonad development cycle of the soft bottom-gravel gorgonian Leptogorgia sarmentosa (Esper, 1791) in the NW Mediterranean Sea. Invertebr Reprod Dev. 2009;53:175–90.

    Article  Google Scholar 

  • Rossi S, Tsounis G, Orejas C, PadrĂłn T, Gili J-M, Bramanti L, TeixidĂł N, Gutt J. Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol. 2008;154:533–45.

    Article  Google Scholar 

  • Sale PF. The reproductive behaviour of the pomacentrid fish, Chromis caeruleus. Z Tierpsychol. 1971;29:156–64.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 2001;413:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Schön I, Pinto RL, Halse S, Smith AJ, Martens K, Birky CW. Cryptic species in putative ancient asexual Darwinulids (Crustacea, Ostracoda). PLoS One. 2012;7, e39844.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebens KP. The ecology of indeterminate growth in animals. Annu Rev Ecol Syst. 1987;18:371–407.

    Article  Google Scholar 

  • Sebens KP. Habitat structure and community dynamics in marine benthic systems. In: Bell SS, McCoy ED, Mushinsky HR, editors. Habitat structure. The physical arrangement of objects in space. Dordrecht, Netherlands: Springer Science+Business Media; 1991. p. 211–34.

    Google Scholar 

  • Shaffer ML. Minimum population sizes for species conservation. Bioscience. 1981;31:131–4.

    Article  Google Scholar 

  • Shlesinger Y, Loya Y. Coral community reproductive patterns: red sea versus the great barrier reef. Science. 1985;228:1333–5.

    Article  CAS  PubMed  Google Scholar 

  • Stanwell-Smith D, Peck LS. Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull. 1998;194:44–52.

    Article  Google Scholar 

  • Strömberg SM. Early life history of the cold-water coral Lophelia pertusa with implications for dispersal. Doctoral thesis, University of Gothenburg. 2016.

    Google Scholar 

  • Sun Z, Hamel JF, Mercier A. Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the northwest Atlantic. Mar Ecol Prog Ser. 2010;410:71–87.

    Article  Google Scholar 

  • Szmant AM. Reproductive ecology of Caribbean reef corals. Coral Reefs. 1986;5:43–53.

    Article  Google Scholar 

  • Takabayashi M, Carter D, Lopez J, Hoegh-Guldberg O. Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs. 2003;22:17–22.

    Google Scholar 

  • TeixidĂł N, Garrabou J, Gutt J, Arntz WE. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser. 2004;278:1–6.

    Article  Google Scholar 

  • Thomson AC, York PH, Smith TM, Sherman CD, Booth DJ, Keough MJ, Ross DJ, Macreadie PI. Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuar Coasts. 2015;38:927–40.

    Article  Google Scholar 

  • Thorson G. Reproductive and larval ecology of marine bottom invertebrates. Biol Rev. 1950;25:1–45.

    Article  CAS  PubMed  Google Scholar 

  • Tilman D. Resource competition and community structure. Monogr Popul Biol. 1982;17:1–296.

    CAS  PubMed  Google Scholar 

  • Todd CD, Lambert WJ, Thorpe JP. The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae “for” dispersal? J Exp Mar Biol Ecol. 1998;228:1–28.

    Article  CAS  Google Scholar 

  • Turon X. A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebr Biol. 2005;124:273–83.

    Article  Google Scholar 

  • Underwood JN, Smith LD, Van Oppen MJH, Gilmour JP. Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol. 2007;16:771–84.

    Article  CAS  PubMed  Google Scholar 

  • Waller RG. Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 691–700.

    Chapter  Google Scholar 

  • Wangensteen OS, Dupont S, Casties I, Turon X, PalacĂ­n C. Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol. 2013;304–311.

    Google Scholar 

  • Watling L, France SC, Pante E, Simpson A. Biology of deep-water octocorals. Adv Mar Biol. 2011;60:41–122.

    Article  PubMed  Google Scholar 

  • Welch JLM, Welch DBM, Meselson M. Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc Natl Acad Sci. 2004;101:1618–21.

    Article  CAS  PubMed Central  Google Scholar 

  • Willis BL, Ayre DJ. Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia. 1985;65:516–25.

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Rhian Waller, Georgios Tsounis, and the editors of this volume for critically reviewing our manuscript and helping to improve it. This review work has been funded by project ChallenGen CTM2013-48163 of the Spanish Government and by the 2014SGR336 grant from the Catalan Government. OSW is currently funded by project SeaDNA, NE/N005759/1 grant from the Natural Environment Research Council (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen S. Wangensteen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Wangensteen, O.S., Turon, X., PalacĂ­n, C. (2016). Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics