Skip to main content

Evolution of the Marine Animal Forest: EvoDevo of Corals, Sea Anemones, and Jellyfishes

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Cnidarians are the sister group of Bilaterians, so they are in a unique position to provide essential clues about the evolution of developmental pathways in animals. It is surprising that with only 10,000 described species, they come in so many different forms, shapes, sizes, and colors. Reef corals, that certainly look as a rich marine forest, are the clearest example of this phenotypic plasticity. Cnidarians are an ancient phylum that together with Porifera, Placozoa, and Ctenophora stand at the base of the animal kingdom tree. Cnidarians share with Bilaterians the main molecular toolkit genes used for patterning cells and tissues and build the basic animal body plan. Plasticity in the Wnt, Fgf, Bmp, and Hox molecular pathways is a key factor to understand such morphological evolution, as these are the main players in the patterning of the anteroposterior and the dorsoventral axes and therefore fundamental to ultimately shape the reef seascape. We intend to provide a link between the diversification of the toolkit versatile genetic pathways to the myriad of shapes of corals, sea anemones, and jellyfishes. The objective is the understanding of how all that morphological richness is produced transforming the molecular repertory. Coral reef species variability makes you appreciate the diversity of forms of marine organisms and makes you understand why conservation efforts must be a priority if we want to preserve this special case of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, et al. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One. 2007;2(10):e1031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, et al. The magnitude of global marine species diversity. Curr Biol. 2012;22(23):2189–202.

    Article  CAS  PubMed  Google Scholar 

  • Ball EE, Hayward DC, Saint R, Miller DJ. A simple plan--cnidarians and the origins of developmental mechanisms. Nat Rev Genet. 2004;5(8):567–77.

    Article  CAS  PubMed  Google Scholar 

  • Bateson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: Macmillan and co.; 1894. xv, 1, 598 p.

    Google Scholar 

  • Bier E, De Robertis EM. EMBRYO DEVELOPMENT. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science. 2015;348(6242):aaa5838.

    Article  PubMed  Google Scholar 

  • Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity : molecular genetics and the evolution of animal design. 2nd ed. Malden: Blackwell Publishing; 2005. ix, 258 p.

    Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. The dynamic genome of Hydra. Nature. 2010;464(7288):592–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins AG, Cartwright P, McFadden CS, Schierwater B. Phylogenetic context and Basal metazoan model systems. Integr Comp Biol. 2005;45(4):585–94.

    Article  PubMed  Google Scholar 

  • Cuvier G. Le règne animal distribué d’après son organisation, pour servir de base à l’ histoire naturelle des animaux et d’ introduction à l’anatomie comparée, Vol. 2. Paris: Deterville; 1817.

    Google Scholar 

  • de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, et al. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora. Dev Biol. 2006;298(2):632–43.

    Article  PubMed  Google Scholar 

  • De Robertis EM. Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol. 2006;7(4):296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ. Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol. 2012;52(6):835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452(7188):745–9.

    Article  CAS  PubMed  Google Scholar 

  • Finnerty JR. The origins of axial patterning in the metazoa: how old is bilateral symmetry? Int J Dev Biol. 2003;47(7–8):523–9.

    PubMed  Google Scholar 

  • Finnerty JR, Martindale MQ. Homeoboxes in sea anemones (Cnidaria:Anthozoa): a PCR-based survey of Nematostella vectensis and Metridium senile. Biol Bull. 1997;193(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ. Origins of bilateral symmetry: hox and dpp expression in a sea anemone. Science. 2004;304(5675):1335–7.

    Article  CAS  PubMed  Google Scholar 

  • Gauchat D, Mazet F, Berney C, Schummer M, Kreger S, Pawlowski J, et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci U S A. 2000;97(9):4493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genikhovich G, Fried P, Prunster MM, Schinko JB, Gilles AF, Fredman D, et al. Axis patterning by BMPs: cnidarian network reveals evolutionary constraints. Cell Rep. 2015;10(10):1646–54.

    Google Scholar 

  • Gilbert SF, Bosch TC, Ledon-Rettig C. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet. 2015;16(10):611–22.

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E. Generelle Morphologie der Organismen. Berlin: George Reimer; 1866.

    Book  Google Scholar 

  • Haeckel E. Art forms in nature: the prints of Ernst Haeckel. Munich: Prestel; 1998. 139 pp.

    Google Scholar 

  • Hartmann B, Muller M, Hislop NR, Roth B, Tomljenovic L, Miller DJ, et al. Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development. Dev Biol. 2010;340(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  • Hatschek B. Lehrbuch der Zoologie. Jena: G Fischer; 1888.

    Google Scholar 

  • Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE. The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Dev Biol. 2015;399(2):337–47.

    Article  CAS  PubMed  Google Scholar 

  • Hayward DC, Samuel G, Pontynen PC, Catmull J, Saint R, Miller DJ, et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci U S A. 2002;99(12):8106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407(6801):186–9.

    Article  CAS  PubMed  Google Scholar 

  • Hollo G. A new paradigm for animal symmetry. Interface Focus. 2015;5(6):20150032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopwood N. Haeckel's embryos : images, evolution, and fraud. Chicago: The University of Chicago Press; 2015. vii, 388 pages p.

    Google Scholar 

  • Ikmi A, McKinney SA, Delventhal KM, Gibson MC. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun. 2014;5:5486.

    Article  CAS  PubMed  Google Scholar 

  • Jenner RA. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol Dev. 2000;2(4):208–21.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda T, Motoki JY. Gastrulation and pre-gastrulation morphogenesis, inductions, and gene expression: similarities and dissimilarities between urodelean and anuran embryos. Dev Biol. 2012;369(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  • Kitchen SA, Crowder CM, Poole AZ, Weis VM, Meyer E. De Novo Assembly and Characterization of Four Anthozoan (Phylum Cnidaria) Transcriptomes. G3 (Bethesda). 2015;5(11):2441–52.

    Article  Google Scholar 

  • Kraus Y, Fritzenwanker JH, Genikhovich G, Technau U. The blastoporal organiser of a sea anemone. Curr Biol. 2007;17(20):R874–6.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn K, Streit B, Schierwater B. Isolation of Hox genes from the scyphozoan Cassiopeia xamachana: implications for the early evolution of Hox genes. J Exp Zool. 1999;285(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW. Unexpected complexity of the Wnt gene family in a sea anemone. Nature. 2005;433(7022):156–60.

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Odling-Smee J, Gilbert SF. EvoDevo and niche construction: building bridges. J Exp Zool B Mol Dev Evol. 2008;310(7):549–66.

    Article  PubMed  Google Scholar 

  • Lanna E. Evo-devo of non-bilaterian animals. Genet Mol Biol. 2015;38(3):284–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol. 2009;7(11):e1000248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, et al. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun. 2014;5:3905.

    Article  CAS  PubMed  Google Scholar 

  • Leray M, Knowlton N. Censusing marine eukaryotic diversity in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1702).

    Google Scholar 

  • Libro S, Vollmer SV. Genetic signature of resistance to white band disease in the Caribbean Staghorn coral Acropora cervicornis. PLoS One. 2016;11(1):e0146636.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda RK, Karch F. The ABC of the BX-C: the bithorax complex explained. Development. 2006;133(8):1413–22.

    Article  CAS  PubMed  Google Scholar 

  • Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol. 2009;332(2–3):184–209.

    Article  PubMed  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 2004;131(10):2463–74.

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ. Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A. 2006;103(30):11195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, et al. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ. 2015;3:e715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendivil Ramos O, Barker D, Ferrier DE. Ghost loci imply Hox and ParaHox existence in the last common ancestor of animals. Curr Biol. 2012;22(20):1951–6.

    Article  CAS  PubMed  Google Scholar 

  • Miglietta MP, Cunningham CW. Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria). Evolution. 2012;66(12):3876–901.

    Article  PubMed  Google Scholar 

  • Moczek AP. The nature of nurture and the future of evodevo: toward a theory of developmental evolution. Integr Comp Biol. 2012;52(1):108–19.

    Article  PubMed  Google Scholar 

  • Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510(7503):109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtha MT, Leckman JF, Ruddle FH. Detection of homeobox genes in development and evolution. Proc Natl Acad Sci U S A. 1991;88(23):10711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman SA, Forgacs G, Muller GB. Before programs: the physical origination of multicellular forms. Int J Dev Biol. 2006;50(2–3):289–99.

    Article  CAS  PubMed  Google Scholar 

  • Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, et al. Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol. 2013;67(1):223–33.

    Article  PubMed  Google Scholar 

  • Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, et al. Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol. 2010;27(9):1983–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86–94.

    Article  CAS  PubMed  Google Scholar 

  • Quiquand M, Yanze N, Schmich J, Schmid V, Galliot B, Piraino S. More constraint on ParaHox than Hox gene families in early metazoan evolution. Dev Biol. 2009;328(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  • Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saina M, Genikhovich G, Renfer E, Technau U. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A. 2009;106(44):18592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz CB, Technau U. The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol. 2003;212(12):563–70.

    CAS  PubMed  Google Scholar 

  • Schuchert P. High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol. 2014;76:1–9.

    Article  PubMed  Google Scholar 

  • Schummer M, Scheurlen I, Schaller C, Galliot B. HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO J. 1992;11(5):1815–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320–3.

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457(7231):818–23.

    Article  CAS  PubMed  Google Scholar 

  • Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992;70(5):829–40.

    Article  CAS  PubMed  Google Scholar 

  • Spemann HaM H. Uber induktion von Embryonalagen durch Impantation Artfremder Organisatoren. Arch Entw Mech. 1924;100:599–638.

    Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. The Trichoplax genome and the nature of placozoans. Nature. 2008;454(7207):955–60.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466(7307):720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature. 2003;426(6965):446–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by CONACYT program “Fronteras en la Ciencia 2015-1” grant number 2 awarded to EM. ER-H is a graduate student at the Biomedical Sciences Program at UNAM. In memory of Professor Armando Gomez-Puyou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Griselda Avila-Soria or Ernesto Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Rangel-Huerta, E., Avila-Soria, G., Maldonado, E. (2016). Evolution of the Marine Animal Forest: EvoDevo of Corals, Sea Anemones, and Jellyfishes. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17001-5

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics