Skip to main content

Where Seaweed Forests Meet Animal Forests: the Examples of Macroalgae in Coral Reefs and the Mediterranean Coralligenous Ecosystem

  • Living reference work entry
  • First Online:

Abstract

The Mediterranean coralligenous and the intertropical coral reef ecosystems are similar in several aspects, such as their ability to thrive in nutrient-poor waters and the communities associated with them. For example, these ecosystems encompass communities ranging from bioconstructions by calcified blade-forming coralline macroalgae, bioconstructions by calcified hexacorallians, canopy-forming seaweed forests, canopy-forming gorgonian (animal) forests, to turfs of macroalgae. They depend mainly upon available light, temperature, and herbivore pressure. In spatial terms, these communities can constitute a complex mosaic. Over time, they can follow each other throughout ecological successions, i.e., a suite of shifts, or phase-shift events, as a consequence of natural or anthropogenic disturbances. Some of these communities, of which the autogenic ecosystem engineers are esthetically pleasing, large-sized, and long-lived, such as blade-forming corallines, gorgonians, and hexacorallians, are often explicitly or implicitly, but erroneously, regarded as the whole ecosystem, whereas they are in fact only part of it. Both coral reefs and the Mediterranean coralligenous ecosystems dwell in highly oligotrophic waters. Their success hinges upon mutualism with unicellular primary producers (dinobionts), the efficient recycling of nitrogen, and diazotrophy (coral reefs), and upon the input of allochthonous organic matter (coralligenous), rather than on the primary production of macroalgae alone (e.g., Cystoseira, Sargassum, Turbinaria, and turf-forming species). In addition, species diversity is high, which substantially helps to make these ecosystems species diversity hotspots. The close intertwining of the different communities (seaweed forests, heterotrophic animal forests, photosynthetic animal forests – via mutualism – and highly productive macroalgal turfs) within these two ecosystems, together with the massive precipitation of calcium carbonate, makes the structure and functioning of these ecosystems highly original, without counterpart in the terrestrial realm.

This is a preview of subscription content, log in via an institution.

References

  • Aguilar R, García S, Ubero D. Distribution of deep-sea laminarians around three Spanish marine protected areas. In: Proceedings of the fourth Mediterranean symposium on marine vegetation. Tunis: UNEP Publication; 2010. p. 145–6.

    Google Scholar 

  • Arnold SN, Steneck R, Mumby PJ. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser. 2010;414:91–105.

    Article  Google Scholar 

  • Balata D, Piazzi L, Cecchi E, Cinelli F. Variability of Mediterranean coralligenous assemblages subject to local variation in sediment deposition. Mar Environ Res. 2005;60(4):403–21.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros E. Els vegetals i la zonació litoral: espècies, communitats i factors que influeixen en la seva distribució. Barcelona: Institut d’Estudis Catalans; 1992.

    Google Scholar 

  • Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev. 2006;44:123–95.

    Article  Google Scholar 

  • Ballesteros E, Garrabou J, Hereu B, Zabala M, Cebrian E, Sala E. Deep water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean. Insights into assemblage structure and population dynamics. Estuar Coast Shelf Sci. 2009;82:477–84.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429:826–33.

    Article  Google Scholar 

  • Bensoussan N, Romano JC, Harmelin JG, Garrabou J. High resolution characterization of northwest Mediterranean coastal waters thermal regime: to better understand responses of benthic communities to climate change. Estuar Coast Shelf Sci. 2010;87:431–41.

    Article  Google Scholar 

  • Boisset F, Ferrer-Gallego PP, Furnari G, Cormaci M, Dennetiere B. Typification of the Mediterranean endemic deep-water macroalga Laminaria rodriguezii Bornet (Laminariaceae, Phaeophyceae). Cryptogam Algol. 2016;37(2):1–12.

    Article  Google Scholar 

  • Boudouresque CF. Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale). La sous-strate sciaphile des peuplements de grandes Cystoseira de mode battu. Bulletin du Muséum d’Histoire Naturelle de Marseille. 1971; 31: 141–151 + 1 table.

    Google Scholar 

  • Boudouresque CF. Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée Occidentale (fraction algale). Les peuplements sciaphiles de mode relativement calme sur substrats durs. Bulletin du Muséum d’Histoire Naturelle de Marseille. 1973;33:147–225.

    Google Scholar 

  • Boudouresque CF. Taxonomy and phylogeny of unicellular eukaryotes. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T, editors. Environmental microbiology: fundamentals and applications. Microbial ecology. Dordrecht: Springer; 2015.

    Google Scholar 

  • Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L. Protection and conservation of Posidonia oceanica meadows. Tunis: RAMOGE and RAC/SPA Publishing; 2012.

    Google Scholar 

  • Boudouresque CF, Ruitton S, Bianchi CN, Chevaldonné P, Fernandez C, Harmelin-Vivien M, Ourgaud M, Pasqualini V, Perez T, Pergent G, Thibaut T, Verlaque M. Terrestrial versus marine diversity of ecosystems. And the winner is: the marine realm. In: Langar H, Bouafif C, Ouerghi A, editors. Proceedings of the 5th Mediterranean Symposium on Marine Vegetation (Portorož, Slovenia, 27–28 Oct 2014). Tunis: RAC/SPA Publishing; 2014.

    Google Scholar 

  • Boudouresque CF, Caumette P, Bertrand JC, Normand P, Sime-Ngando T. Systematic and evolution of microorganisms: general concepts. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T, editors. Environmental microbiology: fundamentals and applications. Microbial ecology. Dordrecht: Springer; 2015.

    Google Scholar 

  • Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VGW. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology. 2009;90(6):1478–84.

    Article  PubMed  Google Scholar 

  • Cánovas Molina A, Montefalcone M, Vassallo P, Morri C, Bianchi CN, Bavestrello G. Combining literature review, acoustic mapping and in situ observations: an overview of coralligenous assemblages in Liguria (NW Mediterranean Sea). Sci Mar. 2016;80(1):7–16.

    Google Scholar 

  • Cebrian E, Linares C, Marschal C, Garrabou J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol Invasions. 2012;14:2647–56.

    Article  Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett. 2000;3:284–93.

    Article  Google Scholar 

  • Coleman MA, Kelaher BP, Steinberg PD, Millar AJ. Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. J Phycol. 2008;44(4):897–901.

    Article  PubMed  Google Scholar 

  • Coma R, Linares C, Ribes M, Diaz D, Garrabou J, Ballesteros E. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar Ecol Prog Ser. 2006;327:51–60.

    Article  Google Scholar 

  • Cowen R. The role of algal symbiosis in reefs through time. Palaios. 1988;3:221–6.

    Article  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett. 2007;34(11):1–6.

    Article  Google Scholar 

  • Eakin CM. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs. 1996;15:109–19.

    Google Scholar 

  • Fredj G. Compte-rendu de plongée en S.P. 300 sur les fonds à Laminaria rodriguezii Bornet de la pointe de Revellata (Corse). Bull Inst Océanogr Monaco. 1972;71(1421):1–42.

    Google Scholar 

  • Garrabou J, Ballesteros E. Growth of Mesophyllum alternans and Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean. Eur J Phycol. 2000;35(1):1–10.

    Article  Google Scholar 

  • Garrabou J, Perez T, Sartoretto S, Harmelin JG. Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser. 2001;217:263–72.

    Article  Google Scholar 

  • Garrabou J, Ballesteros E, Zabala M. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coast Shelf Sci. 2002;55(3):493–508.

    Article  Google Scholar 

  • Gatti G, Bianchi CN, Parravicini V, Rovere A, Peirano A, Montefalcone M, Massa F, Morri C. Ecological change, sliding baselines and the importance of historical data: lessons from combining observational and quantitative data on a temperate reef over 70 years. PLoS One. 2015;10(2):1–20 (e118581).

    Article  Google Scholar 

  • Gennaro P, Piazzi L. Synergism between two anthropic impacts: Caulerpa racemosa var. cylindracea invasion and seawater nutrient enrichment. Mar Ecol Prog Ser. 2011;427:59–70.

    Article  CAS  Google Scholar 

  • Gili JM, Sardà R, Madurell T, Rossi S. Zoobenthos. In: Goffredo S, Dubinsky Z, editors. The Mediterranean Sea: its history and present challenges. Fauna. Dordrecht: Springer; 2014.

    Google Scholar 

  • Glynn PW, Manzello DP. Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C, editor. Coral reefs in the anthropocene. Dordrecht: Springer; 2015.

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached coral. Nature. 2006;440:1186–9.

    Article  CAS  PubMed  Google Scholar 

  • Hart DE, Kench PS. Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia. Coral Reefs. 2007;26:53–68.

    Article  Google Scholar 

  • Hata H, Kato M. Weeding by the herbivorous damselfish Stegastes nigricans in nearly monocultural algae farms. Mar Ecol Prog Ser. 2002;237:227–31.

    Article  Google Scholar 

  • Hereu B, Mangialajo L, Ballesteros E, Thibaut T. On the occurrence, structure and distribution of deep-water Cystoseira (Phaeophyceae) populations in the Port-Cros National Park (north-western Mediterranean). Eur J Phycol. 2008;43(3):263–73.

    Article  Google Scholar 

  • Hong JS. Etude faunistique d'un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). Doctoral thesis, Aix-Marseille University, Marseille; 1980.

    Google Scholar 

  • Hughes TP. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science. 1994;265:1547–51.

    Article  CAS  PubMed  Google Scholar 

  • James NP, Wray JL, Ginsburg RN. Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of Late Paleozoic reefs and cements. J Sediment Res. 1988;58(2):291–303.

    CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.

    Article  Google Scholar 

  • Jones NS, Ridgwell A, Hendy EJ. Evaluation of coral reef carbonate production models at a global scale. Biogeosciences. 2015;12:1339–56.

    Article  CAS  Google Scholar 

  • Laborel J. Marine biogenic constructions in the Mediterranean. Sci Rep Port-Cros Natl Park. 1987;13:97–126.

    Google Scholar 

  • LaJeunesse TC, Thornhill DJ. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 2011;6(12):1–11 (e29013).

    Article  Google Scholar 

  • Laubier L. Le coralligène des Albères. Monographie biocénotique. Ann Inst Oceanogr. 1966;43(2):137–316.

    Google Scholar 

  • Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, Lajeunesse TC. Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol. 2015;50(2):155–72.

    Article  Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Perez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol. 2010;25(4):250–60.

    Article  PubMed  Google Scholar 

  • Leletkin VA. The energy budget of coral polyps. Russ J Mar Biol. 2000;26(6):389–98.

    Article  Google Scholar 

  • Leprieur F, Descombes P, Gaboriau T, Cowman PF, Parravicini V, Kubicki M, Melián CJ, De Santana CN, Heine C, Mouillot D, Bellwood DR, Pellissier L. Plate tectonic drive tropical reef biodiversity dynamics. Nat Commun. 2016;7(11461):1–8.

    Google Scholar 

  • Littler MM, Littler DS. Structure and role of algae in tropical reef communities. In: Lembi CA, Waaland JR, editors. Algae and human affairs. Cambridge/New York: Cambridge University Press; 1988.

    Google Scholar 

  • Littler MM, Littler DS, Taylor PR. Animal-plant defense associations: effects on the distribution and abundance of tropical reef macrophytes. J Exp Mar Biol Ecol. 1987;105:107–21.

    Article  Google Scholar 

  • Martin S, Gattuso JP. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol. 2009;15:2089–100.

    Article  Google Scholar 

  • Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso JP. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol. 2013;3(3):676–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus JW, Polsenberg JF. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr. 2004;60:263–79.

    Article  Google Scholar 

  • Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.

    Article  Google Scholar 

  • Morganti C, Cocito S, Sgorbini S. Contribution of bioconstructors to coralligenous assemblages exposed to sediment deposition. Biol Mar Mediterr. 2001;8:283–6.

    Google Scholar 

  • Mortensen PB, Hovland MT, Fosså JH, Furevik DM. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK. 2001;81(4):581–97.

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26(4):601–11.

    Article  CAS  Google Scholar 

  • Navarro L, Hereu B, Linares C, Ballesteros E., Zabala M, Bonaviri C, Cebrián E, Teixidó N. Spatial and temporal variability on deep-water assemblages of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean and the effects of an exceptional storm. In: Assessment of the ecological impact of the extreme storm of Sant Esteve’s Day (26 December 2008) on the littoral ecosystems of the north Mediterranean, Spanish coasts. Final Report (PIEC 200430E599). Blanes: Centro de Estudios Avanzados de Blanes/Consejo Superior de Investigaciones Científicas Publisher; 2012.

    Google Scholar 

  • Norström AV, Nyström M, Lokrantz J, Folk C. Alternative states on coral reefs: beyond coral-macroalgae phase shifts. Mar Ecol Prog Ser. 2009;376:295–306.

    Article  Google Scholar 

  • Pala C. Life on the mean reefs. Science. 2007;318:1719.

    Article  CAS  PubMed  Google Scholar 

  • Pérès JM. Structure and dynamics of assemblages in the benthal. In: Kine O, editor. Marine ecology, vol. 5, part 1. Chichester: Wiley; 1982.

    Google Scholar 

  • Pérès JM, Picard J. Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil des Travaux de la Station Marine d’Endoume. 1964;31(47):3–137.

    Google Scholar 

  • Pérès JM, Picard J. Réflexions sur la structure trophique des édifices récifaux. Mar Biol. 1969;3:227–32.

    Article  Google Scholar 

  • Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J. Mortalité massive d'invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. C R Acad Sci Life Sci. 2000;323:853–65.

    Article  CAS  Google Scholar 

  • Personnic S, Boudouresque CF, Astruch P, Ballesteros E, Blouet S, Bellan-Santini D, Bonhomme P, Thibault-Botha D, Feunteun E, Harmelin-Vivien M, Pergent G, Pergent-Martini C, Pastor J, Poggiale JC, Renaud F, Thibaut T, Ruitton S. An ecosystem-based approach to assess the status of a Mediterranean ecosystem, the Posidonia oceanica seagrass meadow. Plos One. 2014;9(6):1–17 (e98994).

    Article  Google Scholar 

  • Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci. 2015;112(24):7513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzi L, Balata D, Cecchi E, Cinelli F, Sartoni G. Species composition and patterns of diversity of macroalgal coralligenous assemblages in the north-western Mediterranean Sea. J Nat Hist. 2010;44(1–2):1–22.

    Google Scholar 

  • Piazzi L, Gennaro P, Balata D. Effects of nutrient enrichment on macroalgal coralligenous assemblages. Mar Pollut Bull. 2011;62(8):1830–5.

    Article  CAS  PubMed  Google Scholar 

  • Piazzi L, Gennaro P, Balata D. Threats to macroalgal coralligenous assemblages in the Mediterranean Sea. Mar Pollut Bull. 2012;64(12):2623–9.

    Article  CAS  PubMed  Google Scholar 

  • Ponti M, Perlini RA, Ventra V, Grech D, Abbiati M, Cerrano C. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS One. 2014;9(7):1–13 (e102782).

    Article  Google Scholar 

  • Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.

    Article  Google Scholar 

  • Ruitton S, Personnic S, Ballesteros E, Bellan-Santini D, Boudoresque CF, Chevaldonné P, Bianchi CN, David R, Féral JP, Guidetti P, Harmelin JG, Montefalcone M, Morri C, Pergent G, Pergent-Martini C, Sartoretto S, Tanoue H, Thibaut T, Vacelet J, Verlaque M. An ecosystem-based approach to assess the status of the Mediterranean coralligenous habitat. In: Langar H, Bouafif C, Ouerghi A editors. Proceedings of the 5th Mediterranean Symposium on Marine Vegetation (Portorož, Slovenia, 27–28 Oct 2014). Tunis: RAC/SPA Publishing; 2014.

    Google Scholar 

  • Salomidi M, Katsanevakis S, Borja Á, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega FT. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr Mar Sci. 2012;13(1):49–88.

    Article  Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One. 2008;3(2):1–11 (e1548).

    Article  Google Scholar 

  • Sartoretto S. Bioérosion des concrétions coralligènes de Méditerranée par les organismes perforants: essai de quantification des processus. C R Acad Sci Earth Planet Sci. 1998;327:839–44.

    Google Scholar 

  • Sartoretto S, Francour P. Quantification of bioerosion by Sphaerechinus granularis on “coralligène” concretions of the western Mediterranean. J Mar Biol Assoc UK. 1997;77:565–8.

    Google Scholar 

  • Sartoretto S, Verlaque M, Laborel J. Age of settlement and accumulation rate of submarine ‘coralligène’ (−10 to −60 m) of the northwestern Mediterranean Sea; relation to Holocene rise in sea level. Mar Geol. 1996;130:317–31.

    Article  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE. Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in coral and sea anemones. Mar Ecol Prog Ser. 2002;244:17–26.

    Article  Google Scholar 

  • Schiel DR, Foster MS. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Syst. 2006;37:343–72.

    Article  Google Scholar 

  • Smith JE, Brainard R, Carter A, Grillo S, Edwards C, Harris J, Obura D, Rohwer F, Sala E, Vroom PS, Sandin S. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc R Soc B. 2016;283:1–9.

    Google Scholar 

  • Steneck R, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv. 2002;29(4):436–59.

    Article  Google Scholar 

  • Tegner MJ, Dayton PK. Sea urchins, El Niños and the long-term stability of southern California kelp forest communities. Mar Ecol Prog Ser. 1991;77:49–63.

    Article  Google Scholar 

  • Tegner MJ, Dayton PK, Edwards PB, Riser KL. Large-scale, low-frequency oceanographic effects on kelp forest succession: a tale of two cohorts. Mar Ecol Prog Ser. 1997;146:117–34.

    Article  Google Scholar 

  • Teixidó N, Casas E, Cebrián E, Linares C, Garrabou J. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm. PLoS One. 2013;8(1):1–13 (e53742).

    Google Scholar 

  • Thibaut T, Pinedo S, Torras X, Ballesteros E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar Pollut Bull. 2005;50:1472–89.

    Article  CAS  PubMed  Google Scholar 

  • Thibaut T, Blanfuné A, Boudouresque CF, Verlaque M. Decline and local extinction of Fucales in the French Riviera: the harbinger of future extinctions? Mediterr Mar Sci. 2015;16(1):206–24.

    Google Scholar 

  • Thibaut T, Blanfuné A, Boudouresque CF, Cottalorda JM, Hereu B, Susini ML, Verlaque M. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogam Algol. 2016;37(1):61–90.

    Article  Google Scholar 

  • Tribollet A, Payri C. Bioerosion of the coralline alga Hydrolithon onkodes by microborers in coral reefs of Moorea, French Polynesia. Oceanol Acta. 2001;24(4):329–42.

    Article  Google Scholar 

  • Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M. Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs. 2002;21:424–32.

    Google Scholar 

  • Tribollet A, Langdon C, Golubic S, Atkinson M. Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol. 2006;42:292–303.

    Article  CAS  Google Scholar 

  • Vermeij MA, van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One. 2010;5(12):1–8 (e14312).

    Article  Google Scholar 

  • Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, De Clerck O, Payri CE. Allelopathic interactions between the brown alga genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Sci Rep. 2016;6(18637):1–11.

    Google Scholar 

  • Virgilio M, Airoldi L, Abbiati M. Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs. 2006;25(2):265–72.

    Article  Google Scholar 

  • Žuljević A, Peters AF, Nikolić V, Antolić B, Despalatović M, Cvitković I, Isajlović I, Mihanović H, Matijević S, Shewring DM, Canese S, Katsaros C, Küpper FC. The Mediterranean deep-water kelp Laminaria rodriguezii is an endangered species in the Adriatic Sea. Mar Biol. 2016;163:1–12.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to an anonymous reviewer and to the editor, Sergio Rossi, for suggestions, and to Michael Paul, a native English speaker, for improving the English text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles F. Boudouresque , Aurélie Blanfuné , Mireille Harmelin-Vivien , Sébastien Personnic , Sandrine Ruitton , Thierry Thibaut or Marc Verlaque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Boudouresque, C.F. et al. (2016). Where Seaweed Forests Meet Animal Forests: the Examples of Macroalgae in Coral Reefs and the Mediterranean Coralligenous Ecosystem. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics