Skip to main content

Octocoral Diseases in a Changing Ocean

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Octocorals (Cnidaria, Octocorallia) constitute a geographically widely distributed and common group of marine invertebrates commonly referred to as “soft-corals,” “sea fans,” “horny corals,” “sea feathers,” and “sea plumes.” They are found from shallow coastal habitats to mesophotic and abyssal depths. Octocorals are important members of most Atlantic-Caribbean, Indo-Pacific, and Mediterranean coastal and mesophotic reef communities; however, information about their susceptibility to diseases, predation, and competition, and their relationship with changing environmental conditions is limited. At least 19 diseases have been observed in at least 42 common octocoral species throughout their range. Twelve of these have been reported in the wider-Caribbean (CA), one in Brazil (BR), two in the Mediterranean (ME), one in the Eastern Pacific (EP), and three in the western Pacific (WP). Pathogenic and/or environmental causes have been identified for eight diseases, including viruses, terrestrial fungi, protozoans, bacteria and cyanobacteria, filamentous algae, parasitic copepods, and high temperature. Only a few of the suspected pathogens have been tested with Koch’s postulates. At least eight disease outbreaks have led to extensive octocoral mortalities in the CA, ME, BR, and EP with detrimental ecological consequences. The fungal disease Aspergillosis has produced the highest mortalities in the CA and the EP. Other fungi, protozoans, and the bacterium Vibrio coralliilyticus were identified as potential causes of the death of millions of colonies in two Mediterranean disease outbreaks. Bacterial and fungal agents seemed to be responsible for the mass mortalities in Brazil and the WP. Most outbreaks in all regions were linked to high thermal anomalies associated with climate change, which seems to be the major driver. Other biological stressors such as predation and/or competition produce injuries that may contribute to the spread of infections and mortality. Overfishing of common predators could lead to population explosions of octocoral-feeding species that produced mass mortalities in some Caribbean localities. Our lack of knowledge of causes and pathogenesis of octocoral diseases parallels that of hard corals. New diseases are being described almost every year concomitant with increasing seawater temperatures. The ecological and economic consequences could be significant, with drastic changes in the seascape of shallow coral reefs and other coastal marine habitats and reduction of their ecological services. Given our limited knowledge, our best options for recovery of octocorals and coral reefs in general include sound management of coastal fisheries, development and tourism; reduction of land- and sea-based pollution; and abating effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antonius A. New observations in coral destruction in reefs. Assoc Mar Lab Caribb. 1973;10:3.

    Google Scholar 

  • Antonius A. The “band” diseases in coral reefs. Proc 6th Int Coral Reef Symp. 1981;2:7–14.

    Google Scholar 

  • Alker AP, Kim K, Dube DH, Harvel CD. Localized induction of a generalized response against multiple biotic agents in Caribbean sea fans. Coral Reefs. 2004;23:397–405.

    Article  Google Scholar 

  • Altizer S, Ostfield RS, Johnson PTJ, Katz S, Harvell DC. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341:514.

    Article  CAS  PubMed  Google Scholar 

  • Aronson RB, Precht WF, Macintyre IG. Extrinsic control of species replacement on a Holocene reef in Belize: the role of coral disease. Coral Reefs. 1998;17:223–30.

    Article  Google Scholar 

  • Aronson RB, Precht WF. Evolutionary palaeoecology of Caribbean coral reefs. In: Allmon WD, Bottjer DJ, editors. Evolutionary paleoecology: the ecological context of macro-evolutionary change. New York: Columbia University Press; 2001a.

    Google Scholar 

  • Aronson RB, Precht WF. White-band disease and the changing face of Caribbean coral reefs. In: Porter JW, editor. The ecology and etiology of newly emerging marine diseases, Hydrobiologia, vol. 460(2). Kluwer; 2001b. p. 25–38.

    Google Scholar 

  • Bally M, Garrabou J. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Glob Chang Biol. 2007;13:2078–88.

    Article  Google Scholar 

  • Baker BJ, Scheuer P. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J Nat Prod. 1994;57(10):1346–53.

    Article  CAS  PubMed  Google Scholar 

  • Barrero-Canosa J, Dueñas L, Sánchez JA. Isolation of potential fungal Pathogens in gorgonian corals at the Tropical Eastern Pacific. Coral Reefs. 2013;32:35–41.

    Article  Google Scholar 

  • Bayer FM. The shallow water Octocorallia of the West Indian region. Stud Fauna Curaçao. 1961;12:1–373.

    Google Scholar 

  • Botero L. Observations on the size, predators and tumor-like outgrowth of gorgonian octocoral colonies in the area of Santa Marta, Caribbean coast of Colombia. Northeast Gulf Sci. 1990;11:1–10.

    Google Scholar 

  • Bruckner AW, Hill R. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching. Dis Aquat Organ. 2009;87:19–31.

    Article  PubMed  Google Scholar 

  • Bruno JF, Peters LE, Harvell CD, Hettinger A. Nutrient enrichment can increase the severity of coral diseases. Ecol Lett. 2003;6:1056–61.

    Article  Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 2007;5:e124. doi:10.1371/journal.pbio.0050124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruno JF, Ellner SP, Vu I, Kim K, Harvell CD. Impacts of aspergillosis on sea fan coral demography: modeling a moving target. Ecol Monogr. 2011;81(1):123–39.

    Article  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB. Gorgonophilus canadensis n. gen., n. sp. (Copepoda: Lamippidae), a gall forming endoparasite in the octocoral Paragorgia arborea (L., 1758) from the northwest Atlantic. Symbiosis. 2004;37:155–68.

    Google Scholar 

  • Burge CA, Douglas N, Conti-Jerpe I, Weil E, Roberts S, Friedman CS, Harvell CD. Friend or foe: the association of Labyrinthulomycetes with the Caribbean sea fan Gorgonia ventalina. Dis Aquat Organ. 2012;101:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Burge CA, Mouchka ME, Harvel CD, Roberts S. Immune response of the Caribbean seafan, Gorgonia ventalina exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing. Front Physiol. 2013;4:1–9.

    Article  Google Scholar 

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EF, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CW. Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci. 2014;6:249–77.

    Article  PubMed  Google Scholar 

  • Carpenter RC. Mass mortality of Diadema antillarum. I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol. 1990;104:67–77.

    Article  Google Scholar 

  • Carpenter K, Livingston S, et al. One third of reef-building corals face elevated extinction risk from climate change and local impacts. Science. 2008;321:560–3.

    Article  CAS  PubMed  Google Scholar 

  • Cassola GE, Pacheco MC, Barbosa MC, Hansen DM, Ferreira CEL. Decline in abundance and health state of an Atlantic subtropical gorgonian population. Mar Pollut Bull. 2016. doi:10.1016/j.marpolbul.01.022.

    Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-vietti R, et al. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (Northwestern Mediterranean) summer 1999. Ecol Lett. 2000;3:284–93.

    Article  Google Scholar 

  • Coma R, Linares C, Ribes M, Diaz D, Garrabou J, Ballesteros E. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar Ecol Prog Ser. 2006;327:51–60.

    Article  Google Scholar 

  • Couch CS, Mydlarz LD, Harvell CD, Douglas NL. Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol. 2008;155:281–92. doi:10.1007/s00227-008-1024-x.

    Article  CAS  Google Scholar 

  • Cronin G, Hay ME, Fenical W, Lindquist N. Distribution, density and sequestration of host chemical defenses of the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. Mar Ecol Prog Ser. 1988;119:177–89.

    Article  Google Scholar 

  • Croquer A, Weil E. Local and geographic variability in distribution and prevalence of coral and octocoral diseases in the Caribbean II: genera-level analysis. Dis Aquat Organ. 2009;83:209–22.

    Article  PubMed  Google Scholar 

  • Daly M, Brugler M, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko D, Rodriguez S, Romano SL, Stake JL. The Phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. In: Zhang ZQ, Shear WA, editors. Linnaeus tercentenary: progress in invertebrate taxonomy, Zootaxa, vol. 1668. 2007. p. 1–766.

    Google Scholar 

  • Douglas N, Mullen K, Talmage S, et al. Exploring the role of chitinolytic enzymes in the sea fan coral, Gorgonia ventalina. Mar Biol. 2007;150:1137–44.

    Article  CAS  Google Scholar 

  • Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Springer; 2011.

    Google Scholar 

  • Feingold J. Ecological studies of a cyanobacterial infection on the Caribbean sea plume Pseudopterogorgia acerosa (Coelenterata: Octocorallia). In: Proceedings of the Sixth International Coral Reef Symposium, Townsville, Australia, vol. 3. 1988. p. 157–62.

    Google Scholar 

  • Flynn K, Weil E. Impact of aspergillosis on the reproduction of the sea fan Gorgonia ventalina. Abstract. In: 11th International coral reef symposium, Ft. Lauderdale. 2008. p. 307.

    Google Scholar 

  • Flynn K, Weil E. Variability of aspergillosis in Gorgonia ventalina in La Parguera, Puerto Rico. Caribb J Sci. 2010;45(2–3):215–20.

    Google Scholar 

  • Fuess LE, Eisenlord ME, Closek CJ, Tracy AM, Mauntz R, Gignoux-Wolfsohn S, et al. Up in arms: immune and nervous system response to sea star wasting disease. PLoS One. 2015;10(7):e0133053. doi:10.1371/journal.pone.0133053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.

    Article  CAS  PubMed  Google Scholar 

  • Garrett P, Ducklow P. Coral disease in Bermuda. Nature. 1975;253:349–50.

    Article  Google Scholar 

  • Garzon-Ferreira J, Zea S. A mass mortality of Gorgonia ventalina (Cnidaria: Gorgoniidae) in the Santa Marta area, Caribbean coast of Colombia. Bull Mar Sci. 1992;50:522–6.

    Google Scholar 

  • Geiser DM, Taylor JW, Ritchie KB, Smith GW. Cause of sea fan death in the West Indies. Nature. 1998;394:138.

    Article  Google Scholar 

  • Gerhart DJ. Emesis, learned aversion, and chemical defense in octocorals: a central role for prostaglandins? Am J Phys. 1991;260(5):R839–43.

    CAS  Google Scholar 

  • Goffredo S, LAsker HR. An adaptive management approach to an octocoral fishery based on the Beverton-Holt model. Coral Reefs. 2008;27:751–61.

    Article  Google Scholar 

  • Goldberg W, Makemson J. Description of a tumorous condition in a gorgonian coral associated with a filamentous green alga. In: Proceedings of the Fourth International Coral Reef Symposium, Manila, Philippines, vol. 2. 1981. p. 685–97.

    Google Scholar 

  • Goldberg W, Makemson J, Colley S. Entocladia endozoica sp. nov., a pathogenic chlorophyte: structure, life history, physiology and effect on its coral host. Biol Bull. 1984;166:368–83.

    Article  Google Scholar 

  • Groner M, Maynard J, Breyta R, Carnegie B, Dobson A, Friedman CS, Froelich B, Garren M, Gulland FMD, Heron SF, Noble RT, Revie CW, Shields JD, Vanderstichel R, Weil E, Wyllie-Echeverria S, Harvell CD. Managing marine disease emergencies in an era of rapid change. Philos Trans R Soc B. 2016;371:20150364. doi:10.1098/rstb.2015.0364.

    Article  CAS  Google Scholar 

  • Guzman HM, Cortes J. Mass death of Gorgonia flabellum L. (Octocorallia: Gorgoniidae) in the Caribbean coast of Costa Rica. Rev Biol Trop. 1984;32:305–8.

    Google Scholar 

  • Hall-Spencer J, Pike J, Munn C. Diseases affect cold-water corals too: Eunicella verrucosa (Cnidaria: Gorgonacea) necrosis in SW England. Dis Aquat Organ. 2007;76:87–97.

    Article  PubMed  Google Scholar 

  • Harvell CD, Fenical W. Chemical and structural defenses of Caribbean octocorals (Pseudopterogorgia spp.): intracolony localization of defense. Limnol Oceanogr. 1989;34:382–9.

    Article  Google Scholar 

  • Harvell CD, Suchanek TH. Partial predation on tropical octocorals by Cyphoma gibossum (Gastropoda). Mar Ecol Prog Ser. 1987;38:37–44.

    Article  Google Scholar 

  • Harvell CD, West JM, Griggs C. Chemical defense of embryos and larvae of a West Indian gorgonian coral, Briareum asbestinum. Invertebr Reprod Dev. 1996;30:239–46.

    Article  CAS  Google Scholar 

  • Harvell CD, Kim K, Quirolo C, Weir J, Smith GW. Coral bleaching and disease: contributors to 1998 mass mortality of Briaerum asbestinum (Octocorallia, Gorgonacea). In: Porter JW, editor. The ecology and etiology of newly emerging marine diseases, Hydrobiologia, vol. 460. 2001. p. 97–104.

    Google Scholar 

  • Harvell D, Aronson R, Baron N, Connell J, Dobson A, Ellner S, Gerber K, Kim K, Kuris A, McCallum H, Lafferty K, McKay B, Porter J, Pascual M, Smith G, Sutherland K, Ward J. The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ. 2004;2:375–82.

    Article  Google Scholar 

  • Harvell CD, Jordan-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis B. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography. 2007;20:172–95.

    Article  Google Scholar 

  • Harvell CD, Altizer S, Cattadori IM, Harrington L, Weil E. Climate change and wildlife diseases: when does the host matter the most? Ecology. 2009;90:912–20.

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury H, Dubi A, Hatziolos ME. Coral reefs under rapid climate change and ocean acidification. Science. 1997;318:1737–42.

    Article  CAS  Google Scholar 

  • Hughes TP. Catastrophes, phase shifts and large scale degradation of a Caribbean coral reef. Science. 1994;265:1547–9.

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, et al. Climate change, human impacts, and the resilience of coral reefs. Science. 2004;301:929–33.

    Article  CAS  Google Scholar 

  • Ivanenko VN, Nikitin MA, Hoeksema BM. Multiple purple spots in the Caribbean sea fan Gorgonia ventalina caused by parasitic copepods at St. Eustatius, Dutch Caribbean. Mar Biodivers. 2015. doi:10.1007/s12526-015-0428-3.

    Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL, Lam VY, editors. Status and trends of Caribbean coral reefs: 1970–2012. Switzerland: Global Coral Reef Monitoring Network, IUCN; 2014.

    Google Scholar 

  • Jensen PR, Harvell CD, Wirtz K, Fenical W. Antimicrobial activity of Caribbean gorgonian corals. Mar Biol. 1996;125:411–9.

    Article  Google Scholar 

  • Kim K, Harvell C, Kim P, et al. Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Mar Biol. 2000a;136:259–67.

    Article  Google Scholar 

  • Kim K, Kim P, Alker A, et al. Chemical resistance of gorgonian corals against fungal infections. Mar Biol. 2000b;137:393–401.

    Article  CAS  Google Scholar 

  • Kim K, Harvell CD. Aspergillosis of sea fan corals: disease dynamics in the Florida Keys. In: Porter J, Porter K, editors. The Everglades, Florida Bay and coral reefs of the Florida Keys, an ecosystem sourcebook. CRC; 2002. p. 813–24.

    Google Scholar 

  • Kim K, Harvell CD. The rise and fall of a six-year coral-fungal epizootic. Am Nat. 2004;164:S52–63.

    Article  PubMed  Google Scholar 

  • Kim K. Diseases in octocorals (31). In: Woodley C, Downs CA, Bruckner A, Porter J, Galloway SB, editors. Coral diseases. Wiley; 2016. p. 410–5.

    Google Scholar 

  • Kim K, Rypien K. Aspergillosis in Caribbean sea fan corals, Gorgonia spp (16). In: Woodley C, Downs CA, Bruckner A, Porter J, Galloway SB, editors. Coral diseases. Wiley; 2016. p. 236–42.

    Google Scholar 

  • Knowlton N, Rohwer F. Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat. 2003;162:51–62.

    Article  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM. Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci. 2015;7:471–96.

    Article  PubMed  Google Scholar 

  • Lafferty KD, Hoffman EE, editors. Marine diseases. Philos Trans R Soc B. 2016;371:20150200. doi:10.1098/rstb.2015.0200.

    Google Scholar 

  • Lasker HR, Coffroth MA, Fitzgerald M. Foraging patterns of Cyphoma gibbosum on octocorals: the roles of host choice and feeding preference. Biol Bull. 1988;174:254–66.

    Article  Google Scholar 

  • Lasker HR. Zooxanthella densities within a Caribbean octocoral during bleaching and non-bleaching years. Coral Reefs. 2003;22(1):23–6.

    Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD. Spread of Diadema mass mortality throughout the Caribbean. Science. 1984;226:335–7.

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA. Population dynamics of Diadema antillarum (Echinodermata; Echinodea) following mass mortality in Panama. Mar Biol. 1988;95:515–26.

    Article  Google Scholar 

  • Liu G, Skirving W, Strong AE. Remote sensing of sea surface temperatures during the 2002 Barrier Reef coral bleaching. Eos. 2003;84:137–44.

    Article  Google Scholar 

  • Lucas M, Rodriguez L, Sanabria D, Weil E. Natural prey preferences and spatial variability of predation pressure by Cyphoma gibbosum (Mollusca: Gastropoda) on octocoral communities off La Parguera, Puerto Rico. ISRN Ecol. 2014. doi:10.1155/2014/742387.

    Google Scholar 

  • Martin SW, Meek AH, Willerberg P. Veterinary epidemiology, principles and methods. Iowa State University Press; 1987.

    Google Scholar 

  • Maynard J, van Hooidonk R, Eakin MC, Puotinen M, Heron SF, Garren M, Lamb J, Williams G, Weil E, Willis B, Harvell CD. Climate projections of conditions that increase coral disease susceptibility and pathogen virulence. Nat Clim. 2015. doi:10.1038/nclimate2625.

    Google Scholar 

  • McClanahan TR, Weil E, Cortés J, Baird A, Ateweberhan M. Consequences of coral bleaching for sessile organisms. In: van Oppen M, Lough J, editors. Coral bleaching: patterns, processes, causes and consequences, Ecological studies. Springer; 2009. p. 121–38.

    Google Scholar 

  • Miller J, Muller E, Rogers CS, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs. 2009;28:925–37.

    Article  Google Scholar 

  • Miller AI, Richardson LL. Emerging coral diseases: a temperature-driven process? Mar Ecol. 2014:1–14. ISSN 0173-9565.

    Google Scholar 

  • Morse D, Morse A, Duncan H. Algal “tumors” in the Caribbean sea fan Gorgonia ventalina. In: Proceedings of the Third International Coral Reef Symposium, vol. 1. Miami: Rosenstiel School of Marine and Atmospheric Science; 1977. p. 623–9.

    Google Scholar 

  • Morse D, Morse A, Duncan H, et al. Algal tumors in the Caribbean octocorallian, Gorgonia ventalina: II. Biochemical characterization of the algae, and first epidemiological observations. Bull Mar Sci. 1981;31:399–409.

    Google Scholar 

  • Morrison-Gardiner S. Studies on the morphology and ecology of fungi associated with the Australian marine environment. PhD thesis. Townsville: James Cook University; 2001.

    Google Scholar 

  • Mullen K, Harvell CD, Alker A, et al. Host range and resistance to aspergillosis in three sea fan species from the Yucatan. Mar Biol. 2006;149:1355–64.

    Article  Google Scholar 

  • Mullen K, Peters EC, Harvell CD. Coral resistance to disease. In: Rosenberg E, Loya Y, editors. Coral health and disease. New York: Springer; 2004. p. 377–99.

    Chapter  Google Scholar 

  • Muller E, Rogers C, Spitzack A, van Woesik R. Bleaching increases the likelihood of disease on Acropora palmata (Lamarck) at Hawksnest Bay, St. John, US Virgin Islands. Coral Reefs. 2008;27:191–5.

    Article  Google Scholar 

  • Murdoch TJT. Population outbreak of the Tritonia hamnerorum nudibranch, an obligate grazer on the purple sea fan Gorgonia ventalina, across Bermuda’s northern reefs in 2005. BBP Special Publication; 2006.

    Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD. Innate immunity, environmental drivers and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Syst. 2006;37:251–88.

    Article  Google Scholar 

  • Mydlarz LD, Harvell CD. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol A. 2007;146:54–62.

    Article  CAS  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One. 2008;3(3), e1811. doi:10.1371/journal.pone.0001811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagelkerken I, Buchan K, Smith GW, Bonair K, Bush P, Garzon- Ferreira J, Botero L, Gayle P, Harvell CD, Heberer C, Kim K, Petrovic C, Pots L, Yoshioka P. Widespread disease in Caribbean sea fans: I. Spreading and general characteristics. In: Proceedings of the 8th International Coral Reef Symposium, vol. 1. Panama; 1997a. p. 679–82.

    Google Scholar 

  • Nagelkerken I, Buchan K, Smith GW, Bonair K, Bush P, Garzon- Ferreira J, Botero L, Gayle P, Harvell CD, Heberer C, Kim K, Petrovic C, Pots L, Yoshioka P. Widespread disease in Caribbean sea fans: II. Pattern of infection and tissue loss. Mar Ecol Prog Ser. 1997b;160:255–63.

    Google Scholar 

  • Oliver JK, Berkelmans R, Eakin CM. Coral bleaching in space and time (3). In: van Oppen MJH, Lough JM, editors. Coral bleaching, Ecological studies. 2009. p. 21–39.

    Google Scholar 

  • Page CA, Croquer A, Bastidas C, Rodríguez S, Neale SJ, Weil E, Willis BL. Halofolliculina ciliate infections on corals (26). In: Woodley CM, Downs CA, Bruckner AW, Porter JW, Galloway SB, editors. Diseases of coral. 1st ed. Wiley; 2016. p. 361–75.

    Google Scholar 

  • Pawlik JR, Burch MT, Fenical J. Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey. J Exp Mar Biol Ecol. 1987;108(1):55–66.

    Article  Google Scholar 

  • Pawlik JR, Fenical W. A re-evaluation of the ichthyodeterrent role of prostaglandins in the Caribbean gorgonian coral Plexaura homomalla. Mar Ecol Prog Ser. 1989;52:95–8.

    Article  CAS  Google Scholar 

  • Peters E. Diseases of coral reef organisms. In: Birkeland C, editor. Life and death of coral reefs. Kluwer; 1997.

    Google Scholar 

  • Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM. Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser. 2003;264:161–71.

    Article  Google Scholar 

  • Peters E. Diseases of coral reefs organisms. In: Birkeland C, editor. Coral reefs in the anthropocene. 2015;8:147–78. doi:10.1007/978-94-017-7249-5_8.

    Google Scholar 

  • Porter JW, editor. The ecology and etiology of newly emerging marine diseases, Hydrobiologia, vol. 460. Kluwer; 2001. 228 pp.

    Google Scholar 

  • Prada C, Weil E, Yoshioka PM. Octocoral bleaching during unusual thermal stress. Coral Reefs. 2010;29:41–5. doi:10.1007/s00338-009-0547-z.

    Article  Google Scholar 

  • Precht, WF, Ginter B, Robbart ML, Fura R, van Woesik R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci Rep. 2016;6. doi:10.1038/srep31374.

    Google Scholar 

  • Randall CJ, van Woesik R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat Clim Chang. 2015;5:375–9.

    Article  Google Scholar 

  • Raymundo LJ, Couch CS, Harvell CD, editors. Coral disease handbook. Guidelines for assessment, monitoring and managing. GEFCRTR program. Australia: Currie Communications; 2008.

    Google Scholar 

  • Raymundo LJ, Work TM, Miller RL, Lozada-Misa PL. Effects of Coralliophila violacea on tissue loss in the scleractinian coral Porites spp. depend on host response. Dis Aquat Organ. 2016;119:75–83.

    Article  CAS  PubMed  Google Scholar 

  • Reijnen BT, Hoeksema BW, Gittenberger E. Host specificity and phylogenetic relationships among Atlantic Ovulidae (Mollusca: Gastropoda). Contrib Zool. 2010;79(2):69–78.

    Google Scholar 

  • Richardson LL. Coral diseases: what is really known? Trends Ecol Evol. 1998;13:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Rivest E, Baker D, Rypien K, Harvell CD. Nitrogen source preference of Aspergillus sydowii, an infective agent associated with aspergillosis of sea fan corals. Limnol Oceanogr. 2010;55:386–92.

    Article  CAS  Google Scholar 

  • Ritchie KB. Regulation of microbial populations by mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14.

    Article  CAS  Google Scholar 

  • Rogers CS. Words matter: recommendations for clarifying coral disease nomenclature and terminology. Dis Aquat Organ. 2010;91:167–75.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ben-Haim Y. Microbial diseases of corals and global warming. Environ Microbiol. 2002;4:318–26.

    Article  PubMed  Google Scholar 

  • Rosenberg E, Loya Y. Coral health and disease. Berlin: Springer; 2004. 488pp.

    Book  Google Scholar 

  • Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Moreno D, Willis BL, Page AC, Weil E, Croquer A, Vargas-Angel B, Jordan-Garza AG, Jordán-Dahlgren E, Raymundo L, Harvell CD. Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis Aquat Organ. 2012;100:249–61.

    Article  PubMed  Google Scholar 

  • Ruetzler K, Santavy D, Antonious A. The black band disease of Atlantic reef corals. I Description of the cyanophyte pathogen. PSZNI Mar Ecol. 1983;4:301–19.

    Article  Google Scholar 

  • Ruzicka RR, Colella MA, Porter JA, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlet A, Meyers MK, Colee J. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser. 2013;489:125–41. doi:10.3354/meps10427.

    Article  Google Scholar 

  • Rypien K, Andras J, Harvell CD. Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Mol Ecol. 2008;17:4068–78.

    Article  PubMed  Google Scholar 

  • Sammarco PW, LaBarre S, Coll JC. Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef. III. The relationship between ichthyotoxicity and morphology. Oecologia. 1987;74:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez JA, Lasker HR, Taylor DJ. Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians. Mol Phylogenet Evol. 2003;29:31–42.

    Article  CAS  Google Scholar 

  • Sánchez JA, Wirshing HH. A field key to the identification of tropical Western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Caribb J Sci. 2005;41(3):508–22.

    Google Scholar 

  • Sánchez JA, Gómez CE, Escobar D, Dueñas LF. Diversidad, abundancia y amenazas de los octocorales de la Isla Malpelo, Pacífico Oriental Tropical, Colombia. Boletín de Investigaciones Marinas y Costeras. 2011;40:139–54.

    Google Scholar 

  • Sánchez JA, Ardila NE, Andrade J, Dueñas LF, Navas R, Ballesteros D. Octocoral densities and mortalities in Gorgona Island, Colombia, Tropical Eastern Pacific. Rev Biol Trop. 2014;62(2):209–19.

    Article  Google Scholar 

  • Scharer MT, Nemeth MI. Mass mortality of gorgonians due to a Cyphoma gibbosum (Linnaeus) population outbreak at Mona Island, Puerto Rico. Coral Reefs. 2010;29(2):533.

    Article  Google Scholar 

  • Smith GW, Ives LD, Nagelkerken IA, Ritchie KB. Caribbean sea-fan mortalities. Nature. 1996;383:487.

    Article  CAS  Google Scholar 

  • Smith GW, Harvell CD, Kim K. Response of sea fans to infection with Aspergillus sp. (Fungi). Rev Biol Trop. 1998;46:205–8.

    Google Scholar 

  • Smith GW, Weil E. Aspergillosis of gorgonians (15). In: Rosenberg E, Loya Y, editors. Coral health and disease. New York: Springer; 2004. p. 270–86.

    Google Scholar 

  • Strychar KC, Coates M, Sammarco P, Piva TJ, Scott PT. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. J Exp Mar Biol Ecol. 2005;320:159–77.

    Article  Google Scholar 

  • Sussman M, Loya Y, Fine M, Rosenberg E. The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol. 2003;5(4):250–5.

    Article  PubMed  Google Scholar 

  • Sutherland KP, Porter JW, Torres C. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser. 2004;266:273–302.

    Article  Google Scholar 

  • Sutherland KP, Berry B, Park A, Kemp DW, Kemp KM, Lipp EK, Porter JW. Shifting white pox aetiologies affecting Acropora palmata in the Florida Keys, 1994–2014. Philos Trans R Soc B. 2015. doi:10.1098/rstb.2015.0205.

    Google Scholar 

  • Toledo-Hernandez C, Zuluaga-Montero A, Bones-Gonzalez A, Rodriguez JA, Sabat AM, Bayman P. Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs. 2008;27:707–14.

    Article  Google Scholar 

  • Van Oppen M, Lough J. Coral bleaching: patterns, processes, causes and consequences, Ecological studies, vol. 205. Berlin: Springer; 2008.

    Google Scholar 

  • Ward JR, Lafferty KD. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing? PLoS Biol. 2004;2:542–7.

    CAS  Google Scholar 

  • Ward JR, Kim K, Harvell CD. Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser. 2006;329:115–21.

    Article  Google Scholar 

  • Wei X, Rodriguez AD, Baran P, Raptis RG, Sánchez JA, Ortega-Barria E, González J. Antiplasmoidal cembradiene diterpenoids from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. Tetrahedron. 2004;60:11813–9.

    Article  CAS  Google Scholar 

  • Weil E, Urreiztieta I, Garzon-Ferreira J. Geographic variability in the incidence of coral and octocoral diseases in the wider Caribbean. In: Proceedings of the 9th International Coral Reef Symposium, Bali, vol. 2. 2002. p. 1231–8.

    Google Scholar 

  • Weil E, Hernandez EA, Bruckner AW, Ortiz AL, Nemeth M and Ruiz H. Distribution and status of acroporid (scleractinia) coral populations in Puerto Rico. In: Proceedings of the Caribbean Workshop: Potential Application of the US Endangered Species Act (ESA) as a Conservation Strategy. NOAA-NMFS and ENCORE; 2003. p. 71–92.

    Google Scholar 

  • Weil E. Coral reef diseases in the wider Caribbean (2). In: Rosenberg E, Loya Y, editors. Coral health and disease. New York: Springer; 2004. p. 35–64.

    Chapter  Google Scholar 

  • Weil E, Smith GW, Gil-Agudelo D. Status and progress in coral reef disease research. Dis Aquat Organ. 2006;69:1–7.

    Article  PubMed  Google Scholar 

  • Weil E, Hooten AJ. Underwater cards for assessing coral health on Caribbean reefs. GEF-CRTR Program. Center for Marine Sciences: University of Queensland, Brisbane; 2008.

    Google Scholar 

  • Weil E, Croquer A, Urreiztieta I. Temporal variability and consequences of coral diseases and bleaching in La Parguera, Puerto Rico from 2003–2007. Caribb J Sci. 2009;45(2–3):221–46.

    Article  Google Scholar 

  • Weil E, Croquer A. Spatial variability in distribution and prevalence of Caribbean coral and octocoral diseases I: community level analysis. Dis Aquat Organ. 2009;83:195–208.

    Article  PubMed  Google Scholar 

  • Weil E, Rogers CS. Coral reef diseases in the Atlantic-Caribbean (27). In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Springer; 2011. p. 465–91.

    Google Scholar 

  • Weil E, Casareto B, Irikawa A, Suzuki Y. Extended geographic distribution of several Indo-Pacific coral reef diseases. Dis Aquat Organ. 2012;98:163–70.

    Article  CAS  PubMed  Google Scholar 

  • Weil E, Croquer A, Flynn K, Lucas M, Soto D, Lucas M, Rodriguez L, Sanabria D. Spatial and temporal dynamics of diseases affecting the sea-fan Gorgonia ventalina in La Parguera, southwest coast of Puerto Rico. In: Indo-Pacific coral reef symposium, Taiwan. Abstract book. 2014.

    Google Scholar 

  • Willis BL, Page CA, Dinsdale EA. Coral disease on the Great Barrier Reef. In: Rosenberg E, Loya Y (eds) Coral health and disease 2004;69–104. Springer, Berlin.

    Google Scholar 

  • Wilkinson C, Souter D. Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Townsville: GCRMN and Reefs and Rain-forest Research Centre; 2008. 152pp.

    Google Scholar 

  • Wobeser GA. Essentials of disease in wild animals. Oxford: Blackwell; 2006.

    Google Scholar 

  • Woodley CM. Downs CA. Bruckner AW: Porter J, Galloway SB, editors. Diseases of coral, John Wiley & Sons Inc.; 2016.

    Google Scholar 

  • Wooldridge SA, Done TJ. Improved water quality can ameliorate effects of climate change on corals. Ecol Appl. 2009;19(6):1492–9.

    Article  PubMed  Google Scholar 

  • Work TM, Aeby GS. Systematically describing gross lesions in corals. Dis Aquat Organ. 2006;70:155–60.

    Article  PubMed  Google Scholar 

  • Work TM, Richardson LL, Reynolds TL, Willis BL. Biomedical and veterinary science can increase our understanding of coral disease. J Exp Mar Biol Ecol. 2008;362:63–70.

    Article  Google Scholar 

  • Work TM, Meteyer C. To understand coral disease, look at coral cells. Ecohealth. 2014;1(4):610–8. doi:10.1007/s10393-014-0931-1.

    Article  Google Scholar 

  • Yonge C, Nicholls A. Studies of the physiology of corals. IV- The structure, distribution and physiology of the zooxanthellae. In: Scientific reports of the GBR expedition, vol. 1. 1931. p. 35–176.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Sergio Rossi Heras for his kind invitation to write this chapter and to be part of this important project. We thank the editorial board at Springer for their support and patience. Drs. S. Rossi Heras, Peter Edmunds, Thierry Work, Robin P. White and two anonymous reviewers provided thoughtful and valuable corrections and suggestions that enhanced the final version of this chapter. Dr. Gabriel Cassola, Carlos E. Leite Ferreira, and Juan Armando Sanchez contributed photographic material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Weil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Weil, E., Rogers, C.S., Croquer, A. (2016). Octocoral Diseases in a Changing Ocean. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics