Skip to main content

Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective

  • Living reference work entry
  • First Online:
Marine Animal Forests

Abstract

Framework-forming scleractinian cold-water corals, with Lophelia pertusa and Madrepora oculata being the most common species, show an outstanding concentration in the North Atlantic Ocean. They are unique in their ability to provide habitats for other organisms ranging from micro- to mega-scale, and some species are even exceptional in their capability to shape the seafloor by forming large three-dimensional structures called coral mounds. Our understanding about the spatial and temporal distribution of cold-water corals and coral mounds and the environmental factors that control coral occurrence and influence mound development increased tremendously during the past 15 years. This synthesis highlights that: (i) species-specific environmental preferences and tolerances need to be considered when describing any coral distribution pattern; (ii) corals and coral mounds are linked to a complex set of multiple environmental variables that must work in concert as each variable might present a stimulator as well as a suppressor for coral occurrence and mound formation; (iii) environmental conditions for mound aggradation are more restrictive than those for coral occurrence; and (iv) the majority of environmental variables influencing the occurrence of corals and mound development are linked to distinct water masses whose characteristics vary with climatic fluctuations. Hence, regional coral distribution pattern and mound aggradation periods are in phase with these fluctuations, even though the specific environmental controls might vary from region to region. Nevertheless, certain data limitations and resulting constraints to generate generalized pattern regarding the climate-related spatiotemporal distribution of cold-water corals and coral mounds still exist and ask for more sophisticated future research strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Regarding the terminology of seabed structures formed by framework-forming scleractinian cold-water corals, Roberts et al. (2009) proposed the following classification: a “reef” comprises a continuously deposited sedimentary unit, while a “coral mound” comprises several successive reef units. However, this classification suffers from the limited knowledge of the temporal evolution of most coral reefs/mounds. This is exemplified by Norwegian reefs, which were believed to exhibit a continuous formation since the onset of the Holocene, but recent chronological studies revealed a discontinuous development for some of them (e.g., López Correa et al. 2012). To avoid this nomenclature pitfall, all three-dimensional structures formed by cold-water corals are termed in the following coral mounds referring exclusively to their geomorphological sculpture disregarding their internal organization.

References

  • Behrenfeld MJ, Falkowski PG. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr. 1997;42:1–20.

    Article  CAS  Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O. Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestion visualised with micro-computed tomography. Facies. 2007;53:157–73.

    Article  Google Scholar 

  • Brooke S, Ross SW. First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep-Sea Res II. 2014;104:245–51.

    Article  CAS  Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM. In: Levitus S, editor, Mishonov A, technical editor. World Ocean Database 2013. Silver Spring, MD: NOAA Atlas NESDIS 72; 2013. p. 209, http://doi.org/10.7289/V5NZ85MT

    Google Scholar 

  • Cairns SD. The deep-water Scleractinia of the Carribean Sea and adjacent waters. Stud Fauna Curacao Caribbean Isl. 1979;180:1–341.

    Google Scholar 

  • Chen T, Robinson LF, Burke A, Southon J, Spooner P, Morris PJ, Hong Chin N. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science. 2015;349(6255):1537–41.

    Article  CAS  PubMed  Google Scholar 

  • Clark MR, Tittensor D, Rogers AD, Brewin P, Schlacher TA, Rowden AA, Stocks K, Consalvey M. Seamount, deep-sea corals and fisheries: vulnerability of deep-sea corals to fishing on seamounts beyond areas of national jurisdication, UNEP-WCMC, biodiversity series no. 25. Cambridge, UK: United Nations Environment Programme - World Conservation Monitoring Centre (UNEP-WCMC); 2006. p. 80.

    Google Scholar 

  • Colman JG, Gordaon DM, Lane AP, Forde MJ, Fitzpatrick J. Carbonate mounds off Mauretania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 417–41.

    Chapter  Google Scholar 

  • Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR. Coral communities of the deep Gulf of Mexico. Deep-Sea Res I. 2008;55:777–87.

    Article  Google Scholar 

  • Correa TBS, Eberli GP, Grasmueck M, Reed JK, Correa AMS. Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar Geol. 2012;326–328:14–27.

    Article  Google Scholar 

  • Davies AJ, Guinotte JM. Global habitat suitability for framework-forming cold-water corals. PLoS One. 2011;6(4):e18483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Wisshak M, Orr JC, Roberts JM. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Res I. 2008;55:1048–62.

    Article  Google Scholar 

  • Davies AJ, Duineveld G, Lavaleye M, Bergman MJ, van Haren H, Roberts JM. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr. 2009;54:620–9.

    Article  Google Scholar 

  • De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet J-P. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol. 2002;188:193–231.

    Article  Google Scholar 

  • De Mol B, Henriet J-P, Canals M. Development of coral banks in the Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Heidelberg: Springer; 2005. p. 515–33.

    Chapter  Google Scholar 

  • De Mol L, Van Rooij D, Pirlet H, Greinert J, Frank N, Quemmerais F, Henriet J-P. Cold-water coral habitats in the Penmarc’h and Guilvinec Canyons (Bay of Biscay): deep-water versus shallow-water settings. Mar Geol. 2011;282:40–52.

    Article  Google Scholar 

  • Dorschel B, Hebbeln D, Rüggeberg A, Dullo W-C. Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sci Lett. 2005;233:33–44.

    Article  CAS  Google Scholar 

  • Dorschel B, Hebbeln D, Rüggeberg A, Dullo W-C. Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight. Int J Earth Sci. 2007;96:73–83.

    Article  CAS  Google Scholar 

  • Douarin M, Elliot M, Noble SR, Sinclair D, Henry L-A, Long D, Moreton SG, Murray Roberts J. Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: a high resolution U-series and 14C chronology. Earth Planet Sci Lett. 2013;375:176–87.

    Article  CAS  Google Scholar 

  • Eisele M, Hebbeln D, Wienberg C. Growth history of a cold-water coral covered carbonate mound – Galway Mound, Porcupine Seabight, NE-Atlantic. Mar Geol. 2008;253:160–9.

    Article  Google Scholar 

  • Eisele M, Frank N, Wienberg C, Hebbeln D, López Correa M, Douville E, Freiwald A. Productivity controlled cold-water coral growth periods during the last glacial off Mauritania. Mar Geol. 2011;280:143–9.

    Article  CAS  Google Scholar 

  • Fink HG, Wienberg C, Hebbeln D, McGregor HV, Schmiedl G, Taviani M, Freiwald A. Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep–Sea Res I. 2012;62:89–96.

    Article  CAS  Google Scholar 

  • Fink HG, Wienberg C, De Pol-Holz R, Wintersteller P, Hebbeln D. Cold-water coral growth in the Alboran Sea related to high productivity during the Late Pleistocene and Holocene. Mar Geol. 2013;339:71–82.

    Article  Google Scholar 

  • Fink HG, Wienberg C, De Pol-Holz R, Hebbeln D. Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res I. 2015;103:37–48.

    Article  Google Scholar 

  • Flögel S, Dullo WC, Pfannkuche O, Kiriakoulakis K, Rüggeberg A. Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Res II. 2014;99:19–26.

    Article  Google Scholar 

  • Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I, Mortensen PB, Alsvag J. Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 359–91.

    Chapter  Google Scholar 

  • Frank N, Paterne M, Ayliffe L, van Weering TCE, Henriet J-P, Blamart D. Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene. Earth Planet Sci Lett. 2004;219:297–309.

    Article  CAS  Google Scholar 

  • Frank N, Ricard E, Lutringer-Paquet A, van der Land C, Colin C, Blamart D, Foubert A, Van Rooij D, Henriet J-P, de Haas H, van Weering T. The Holocene occurrence of cold water corals in the NE Atlantic: implications for coral carbonate mound evolution. Mar Geol. 2009;266:129–42.

    Article  Google Scholar 

  • Frank N, Freiwald A, López Correa M, Wienberg C, Eisele M, Hebbeln D, Van Rooij D, Henriet JP, Colin C, van Weering T, de Haas H, Buhl-Mortensen P, Roberts JM, De Mol B, Douville E, Blamart D, Hatte C. Northeastern Atlantic cold-water coral reefs and climate. Geology. 2011;39:743–6.

    Article  Google Scholar 

  • Freiwald A. Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jorgensen BB, Schlüter M, van Weering TCE, editors. Ocean margin systems. Berlin/Heidelberg: Springer; 2002. p. 365–85.

    Chapter  Google Scholar 

  • Freiwald A, Henrich R, Pätzold J. Anatomy of a deep-water coral reef mound from Stjernsund, West-Finnmark, northern Norway. In: James NP, Clarke JAD, editors, Cool-Water Carbonates. Society of Sedimentary Geologists (SEPM), Special Publications Vol. 56; 1997. p. 140–161.

    Google Scholar 

  • Freiwald A, Rogers A, Hall-Spencer J. Global distribution of cold-water corals (version 2). Update of the dataset used in Freiwald et al. (2004). Cambridge, UK: UNEP World Conservation Monitoring Centre; 2005. http://data.unep-wcmc.org/datasets/1

  • Freiwald A, Beuck L, Rüggeberg A, Taviani M, Hebbeln D, R/V Meteor Cruise M70-1 Participants. The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography. 2009;22:58–74.

    Article  Google Scholar 

  • Glogowski S, Dullo WC, Feldens P, Liebetrau V, von Reumont J, Hühnerbach V, Krastel S, Wynn RB, Flögel S. The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric boundary conditions of a newly discovered cold-water coral province. Geo-Mar Lett. 2015;35:257–69.

    Article  CAS  Google Scholar 

  • Gori A, Orejas C, Madurell T, Bramanti L, Martins M, Quintanilla E, Marti-Puig P, Lo Iacono C, Puig P, Requena S, Greenacre M, Gili JM. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences. 2013;10(3):2049–60.

    Article  Google Scholar 

  • Gori A, Reynaud S, Orejas C, Gili J-M, Ferrier-Pagès C. Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs. 2014;33:665–74.

    Article  Google Scholar 

  • Greene HG, Yoklavich MM, Starr RM, O’Connell VM, Wakefield WW, Sullivan DE, McRea JE, Cailliet GM. A classification scheme for deep seafloor habitats. Oceanol Acta. 1999;22:663–78.

    Article  Google Scholar 

  • Hebbeln D, Wienberg C, Wintersteller P, Freiwald A, Becker M, Beuck L, Dullo C, Eberli GP, Glogowski S, Matos L, Forster N, Reyes-Bonilla H, Taviani M. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences. 2014;11(7):1799–815.

    Article  Google Scholar 

  • Huvenne VAI, Bailey WR, Shannon PM, Naeth J, di Primio R, Henriet J-P, Horsfield B, de Haas H, Wheeler AJ, Olu-Le Roy K. The Magellan mound province in the Porcupine Basin. Int J Earth Sci. 2007;96:85–101.

    Article  CAS  Google Scholar 

  • Huvenne VAI, Tyler PA, Masson DG, Fisher EH, Hauton C, Hühnerbach V, Le Bas TP, Wolff GA. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS One. 2011;6(12):e28755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano A, Ferdelman TG, Williams T, Henriet J-P, Ishikawa T, Kawagoe N, Takashima C, Kakizaki Y, Abe K, Sakai S, Browning EL, Li X, Integrated Ocean Drilling Program Expedition 307 Scientists. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology. 2007;35:1051–4.

    Article  CAS  Google Scholar 

  • López Correa M, Montagna P, Joseph N, Rüggeberg A, Fietzke J, Flögel S, Dorschel B, Goldstein SL, Wheeler A, Freiwald A. Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes. Quat Sci Rev. 2012;34:24–43.

    Article  Google Scholar 

  • Margreth S, Gennari G, Rüggeberg A, Comas MC, Pinheiro LM, Spezzaferri S. Growth and demise of cold-water coral ecosystems on mud volcanoes in the West Alboran Sea: the messages from the planktonic and benthic foraminifera. Mar Geol. 2011;282:26–39.

    Article  Google Scholar 

  • Marshall NB. Aspects of the deep-sea biology. London: Hutchinson; 1954.

    Google Scholar 

  • Matos L, Mienis F, Wienberg C, Frank N, Kwiatkowski C, Groeneveld J, Thil F, Abrantes F, Cunha MR, Hebbeln D. Interglacial occurrence of cold-water corals off Cape Lookout (NW Atlantic): first evidence of the Gulf Stream influence. Deep-Sea Res I. 2015;105:158–70.

    Article  CAS  Google Scholar 

  • Mazzini A, Akhmetzhanov A, Monteys X, Ivanov M. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition. Geo-Mar Lett. 2012;32(3):205–25.

    Article  Google Scholar 

  • Mienis F, de Stigter HC, White M, Duineveld G, de Haas H, van Weering TCE. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res I. 2007;54:1655–74.

    Article  Google Scholar 

  • Mienis F, van der Land C, de Stigter HC, van de Vorstenbosch M, de Haas H, Richter T, van Weering TCE. Sediment accumulation on a cold-water carbonate mound at the Southwest Rockall Trough margin. Mar Geol. 2009;265:40–50.

    Article  CAS  Google Scholar 

  • Mortensen PB, Hovland M, Fosså JH, Furevik DM. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc U K. 2001;51:999–1013.

    Google Scholar 

  • Mortensen PB, Buhl-Mortensen L, Gebruk AV, Krylova EM. Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep-Sea Res II. 2008;55:142–52.

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res II. 2014;99:36–41.

    Article  CAS  Google Scholar 

  • Naumann MS, Tolosa I, Taviani M, Grover R, Ferrier-Pagès C. Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs. 2015;1–11. doi:10.1007/s00338-015-1325-8.

    Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MR. Cold-water corals in the Cap de Creus canyon (north-western Mediterranean): spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser. 2009;397:37–51.

    Article  Google Scholar 

  • Paull CK, Neumann AC, am Ende BA, Ussler III W, Rodriguez NM. Lithoherms on the Florida–Hatteras slope. Mar Geol. 2010;166:83–101.

    Article  Google Scholar 

  • Reed JK. Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia. 2002;471:43–55.

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, Cairns SD. Cold-water corals. The biology and geology of deep-sea coral habitats. Cambridge, UK: Cambridge University Press; 2009. p. 336.

    Book  Google Scholar 

  • Robinson LF, Adkins JF, Scheirer DS, Fernandez DP, Gagnon A, Waller RG. Deep-sea scleractinian coral age and depth distributions in the Northwest Atlantic for the last 225,000 years. Bull Mar Sci. 2007;81:371–91.

    Google Scholar 

  • Rueda JL, González-García E, Krutzky C, López-Rodriguez FJ, Bruque G, López-González N, Palomino D, Sánchez RF, Vázquez JT, Fernández-Salas LM, Díaz-del-Río V. From chemosynthesis-based communities to cold-water corals: vulnerable deep-sea habitats of the Gulf of Cádiz. Mar Biodivers. 2015;1–10. doi:10.1007/s12526-015-0366-0.

    Google Scholar 

  • Rüggeberg A, Dullo W-C, Dorschel B, Hebbeln D. Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight). Int J Earth Sci. 2007;96:57–72.

    Article  Google Scholar 

  • Sánchez F, González-Pola C, Druet M, García-Alegre A, Acosta J, Cristobo J, Parra S, Ríos P, Altuna Á, Gómez-Ballesteros M, Muñoz-Recio A, Rivera J, del Río GD. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea). Deep-Sea Res II. 2014;106:118–40.

    Article  Google Scholar 

  • Schröder-Ritzrau A, Freiwald A, Mangini A. U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Heidelberg: Springer; 2005. p. 691–700.

    Google Scholar 

  • Somoza L, Ercilla G, Urgorri V, León R, Medialdea T, Paredes M, Gonzalez FJ, Nombela MA. Detection and mapping of cold-water coral mounds and living Lophelia reefs in the Galicia Bank, Atlantic NW Iberia margin. Mar Geol. 2014;349:73–90.

    Article  CAS  Google Scholar 

  • Stalder C, Spezzaferri S, Rüggeberg A, Pirkenseer C, Gennari G. Late Weichselian deglaciation and early Holocene development of a cold-water coral reef along the Lopphavet shelf (Northern Norway) recorded by benthic foraminifera and ostracoda. Deep-Sea Res II. 2014;99:249–69.

    Article  CAS  Google Scholar 

  • Stalder C, Vertino A, Rosso A, Rüggeberg A, Pirkenseer C, Spangenberg JE, Spezzaferri S, Camozzi O, Rappo S, Hajdas I. Microfossils, a key to unravel cold-water carbonate mound evolution through time: evidence from the eastern Alboran Sea. PLoS One. 2015;10(10):e0140223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taviani M, Bouchet P, Metivier B, Fontugne M, Delibris G. Intermediate steps of southwards faunal shifts testified by last glacial submerged thanatocoenoses in the Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol. 1991;86:331–8.

    Article  Google Scholar 

  • Taviani M, Angeletti L, Beuck L, Campiani E, Canese S, Foglini F, Freiwald A, Montagna P, Trincardi F. Reprint of On and off the beaten track: megafaunal sessile life and Adriatic cascading processes. Mar Geol. 2016. doi:10.1016/j.margeo.2015.10.003.

    Google Scholar 

  • Thiagarajan N, Gerlach D, Roberts ML, Burke A, McNichol A, Jenkins WJ, Subhas AV, Thresher RE, Adkins JF. Movement of deep-sea coral populations on climatic timescales. Paleoceanography. 2013;28:227–36.

    Article  Google Scholar 

  • Thierens M, Browning E, Pirlet H, Loutre MF, Dorschel B, Huvenne VAI, Titschack J, Colin C, Foubert A, Wheeler AJ. Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene Challenger Mound record (NE Atlantic). Quat Sci Rev. 2013;73:14–30.

    Article  Google Scholar 

  • Titschack J, Thierens M, Dorschel B, Schulbert C, Freiwald A, Kano A, Takashima C, Kawagoe N, Li X. Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Mar Geol. 2009;259:36–46.

    Article  CAS  Google Scholar 

  • Titschack J, Baum D, De Pol Holz R, López Correa M, Forster N, Flögel S, Hebbeln D, Freiwald A. Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs. Sedimentology. 2015;62:1873–98.

    Article  Google Scholar 

  • van der Land C, Mienis F, de Haas H, Frank N, Swennen R, van Weering T. Diagenetic processes in carbonate sediments at the southwest Rockall Trough margin. Sedimentology. 2010;57:912–31.

    Article  Google Scholar 

  • van der Land C, Eisele M, Mienis F, de Haas H, Hebbeln D, Reijmer JJG, van Weering TCE. Carbonate mound development in contrasting settings on the Irish margin. Deep-Sea Res II. 2014;99:297–306.

    Article  Google Scholar 

  • Van Rooij D, Blamart D, De Mol L, Mienis F, Pirlet H, Wehrmann LM, Barbieri R, Maignien L, Templer SP, de Haas H, Hebbeln D, Frank N, Larmagnat S, Stadnitskaia A, Stivaletta N, van Weering T, Zhang Y, Hamoumi N, Cnudde V, Duyck P, Henriet JP. Cold-water coral mounds on the Pen Duick Escarpment, Gulf of Cadiz: the MiCROSYSTEMS project approach. Mar Geol. 2011;282:102–17.

    Article  Google Scholar 

  • Vandorpe T, Van Rooij D, de Haas H. Stratigraphy and paleoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz. Mar Geol. 2014;349:136–51.

    Article  Google Scholar 

  • Vertino A, Stolarski J, Bosellini FR, Taviani M. Mediterranean corals thorugh time: from Miocene to present. In: Goffredo S, Dubinsky Z, editors. The Mediterranean Sea: its history and present challenges. Dordrecht: Springer; 2014. p. 257–74.

    Chapter  Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A, de Haas H, Huvenne VAI, Kozachenko M, Olu-Le Roy K, Opderbecke J. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci. 2007;96:37–56.

    Article  CAS  Google Scholar 

  • White M, Mohn C, de Stigter H, Mottram G. Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Heidelberg: Springer; 2005. p. 503–14.

    Chapter  Google Scholar 

  • Wienberg C, Hebbeln D, Fink HG, Mienis F, Dorschel B, Vertino A, Lopez Correa M, Freiwald A. Scleractinian cold-water corals in the Gulf of Cádiz – first clues about their spatial and temporal distribution. Deep-Sea Res I. 2009;56(10):1873–93.

    Article  Google Scholar 

  • Wienberg C, Frank N, Mertens KN, Stuut J-B, Marchant M, Fietzke J, Mienis F, Hebbeln D. Glacial cold-water coral growth in the Gulf of Cádiz: implications of increased palaeo-productivity. Earth Planet Sci Lett. 2010;298:405–16.

    Article  CAS  Google Scholar 

  • Wilson JB. “Patch” development of the deep-water coral Lophelia pertusa (L.) on the Rockall bank. J Mar Biol Assoc U K. 1979;59:165–77.

    Article  Google Scholar 

  • Yesson C, Clark MR, Taylor ML, Rogers AD. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res I. 2011;58:442–53.

    Article  Google Scholar 

Download references

Acknowledgements

In the first place, we like to thank all the numerous scientists, technicians, and students who made this review possible as they put much effort into organizing research cruises to the North Atlantic, collecting data and material from various coral sites and spending hours to analyze the obtained material. We kindly acknowledge the following people with whom we established a fruitful cooperation and/or profited from lively discussions during the last years: Dierk Hebbeln and André Freiwald (mentors of our early career); Boris Dorschel, Gregor Eberli, Cova Orejas, and Marco Taviani (who are heartily thanked for very helpful comments on earlier versions of this manuscript); and Lydia Beuck, Henk De Haas, Ben De Mol, Wolf-Christian Dullo, Markus Eisele, Timothy Ferdelmann, Jan Fietzke, Hiske Fink, Sascha Flögel, Anneleen Foubert, Norbert Frank, Naima Hamoumi, Katrin Heindel, Lea-Anne Henry, Jean-Pierre Henriet, Veerle Huvenne, Nina Joseph, Akihiro Kano, Anne Kremer, Claudio Lo Iacono, Matthias López Correa, Lelia Matos, Furu Mienis, Hans Pirlet, Jacek Raddatz, Murray Roberts, Andres Rüggeberg, Joachim Schönfeld, Andrea Schröder-Ritzrau, Rudy Swennen, Loubna Terhzaz, Mieke Thierens, David Van Rooij, Cees Van der Land, Tjeerd van Weering, Agostina Vertino, Laura Wehrmann, Andrew Wheeler, Paul Wintersteller, and Helmut Zibrowius (just to name some of them). This work contributes to the DFG-project Palaeo-WACOM (grant He 3412/17), the DFG-project Carbonate budget of cold-water coral mounds along a latitudinal transect (grant Ti 706/1-1), and Cold-water coral mound genesis: IODP Leg 307 and Pleistocene Mediterranean occurrences (grant Fr 1134/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Wienberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Wienberg, C., Titschack, J. (2015). Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics