Skip to main content

Growth Patterns in Long-Lived Coral Species

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

The knowledge on the growth patterns of organisms constructing complex three-dimensional structures can help in understanding their role as engineering species. Growth and form of several sessile organisms are characterized by different properties; one of those is modularity. Trees in terrestrial habitats and corals in marine environments are sessile modular organisms where growth is regulated by similar processes. Part of forestry’s theoretical and practical framework on the study of growth can then be applied to the marine environment. The aim of this chapter is to present an overview of the different growth patterns of corals by applying some of the techniques developed for trees (e.g., annual growth ring count).

As growth can be influenced by environmental conditions, understanding the mechanisms and rates of growth can give precious insights on the effects of climate change and anthropogenic disturbances. Annual growth rings of several species of corals act as climatic archive in a similar manner as it happens in trees. Corals grow in winter and summer, but the density of the calcium carbonate depositions in the coral skeleton is different due to seasonal changes in ocean temperature, pH, availability of nutrients, and differences in light irradiance.

Examples of different coral species living in different environments (from cold-water corals to tropical coral reef species) will be discussed in order to shed light on the mechanism of formation and development of the so-called animal forests.

Field- and laboratory-based knowledge can be integrated within numerical models describing the basic mechanisms of growth and fine-tuned by using observed data. Models are particularly useful as they assess effects that are almost impossible to observe in real time, due to the long life span of some species, as well as impractical experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A. Stable isotopes in deep-sea corals and a new mechanisms for “vital effects”. Geochim Cosmochim Acta. 2003;67:1129–43.

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D. Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol. 2004;3:453–67.

    Article  Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, Tambutté S. Coral calcification, cells to reefs. In: Z Dubinsky, N Stambler (Eds.), Coral reefs: An ecosystem in transition. Dordrecht: Springer Netherlands; 2011;119-50. doi:10.1007/978-94-007-0114-4_9.

    Chapter  Google Scholar 

  • Anthony RNK, Connolly SR, Willis BL. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr. 2002;47(5):1417–29.

    Article  Google Scholar 

  • Benedetti MC, Priori C, Erra F, Santangelo G. Growth patterns in mesophotic octocorals: timing the branching process in the highly-valuable Mediterranean Corallium rubrum. Estuar Coast Shelf Sci. 2016;171:106–10.

    Article  Google Scholar 

  • Bo M, Bavestrello G, Angiolillo M, et al. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS One. 2015;1–21. doi: 10.1371/journal.pone.0119393

    Google Scholar 

  • Bowman DMJS, Brienen RJW, Gloor E, Philips OL, Prior LD. Detecting trends in tree growth: not so simple detecting trends in tree growth: not so simple. Trends Plant Sci. 2013;18(1):11–17.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD. Evolutionary significance of phenotipic plasticity in plants. Adv Genet. 1965;13:115–55.

    Article  Google Scholar 

  • Bramanti L, Magagnini G, De Maio L, Santangelo G. Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol. 2005;314:69–78.

    Article  Google Scholar 

  • Bramanti L, Iannelli M, Santangelo G. Mathematical modeling for conservation and management of gorgonians corals: youngs and olds, could they coexist? Ecol Model. 2009;220(21):2851–6.

    Article  Google Scholar 

  • Bramanti L, Vielmini I, Rossi S, Tsounis G, Iannelli M, Cattaneo-Vietti R, Priori C, Santangelo G. Demographic parameters of two populations of red coral (Corallium rubrum L. 1758) in the North Western Mediterranean. Mar Biol. 2014;161:1015–26.

    Article  Google Scholar 

  • Brooke S, Young CM. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser. 2009;397:153–61.

    Article  Google Scholar 

  • Buddemeier RW, Kinzie RA. Coral growth. Oceanogr Mar Biol Annu Rev. 1976;14:183–225.

    Google Scholar 

  • Canals M, Puig P, de Durrieu de Madron X, Heussner S, Palanques A, Fabres J. Flushing submarine canyons. Nature. 2006;444:354–7.

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Andrews A, Braga-Henriques A, et al. Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Mar Ecol Prog Ser. 2013;473:189–99. doi:10.3354/meps10052.

    Article  Google Scholar 

  • Cau A, Follesa MC, Moccia D, et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar Biol. 2015;162:1865–78. doi:10.1007/s00227-015-2718-5.

    Article  Google Scholar 

  • Cau A, Bramanti L, Cannas R, Follesa MC, Angiolillo M, Canese S, Bo M, Cuccu D, Guizien K. Habitat constraints and self-thinning shape mediterranean red coral deep population structure: implications for conservation practice. Sci Rep. 2016;6:23322.

    Google Scholar 

  • Cheng H, Adkins JF, Edwards RL, Boyle EA. U-Th dating of deep-sea corals. Geochim Cosmochim Acta. 2000;64:2401–16.

    Article  CAS  Google Scholar 

  • Chisholm JRM, Gattuso JP. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr. 1991;36:1232–9.

    Article  CAS  Google Scholar 

  • Cohen AL, Smith SR, McCartney MS, van Etten J. How brain corals record climate: an integration of skeletal structure, growth and chemistry of Diploria labyrinthiformis from Bermuda. Mar Ecol Prog Ser. 2004;271:147–58.

    Article  CAS  Google Scholar 

  • Coma R, Ribes M, Zabala M, Gili JM. Growth in a modular colonial marine invertebrate. Estuar Coast Shelf Sci. 1998;47:459–70.

    Article  Google Scholar 

  • Costantini F, Taviani M, Remia A, Pintus E, Schembrini PJ, Abbiati M. Deep-water Corallium rubrum L. (1758) from the Mediterranean sea: preliminary genetic characterization. Mar Ecol. 2010;31:261–9.

    Article  Google Scholar 

  • Davies PS. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol. 1989;101:389–95.

    Article  Google Scholar 

  • Fablet R, Pecquerie L, de Pontual H, Høie H, Millner R, Mosegaard H, Kooijman SALM. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS One. 2011;6. doi:10.1371/journal.pone.0027055.

    Google Scholar 

  • Freiwald A, Fossa JH, Grehan A, Koslow T, Roberts JM. Cold-water coral reefs: out of sight – no longer out of mind. Cambridge: UNEP-WCMC/Cambridge University Press; 2004.

    Google Scholar 

  • Gallmetzer I, Haselmair A, Velimirov B. Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci. 2010;90:1–10.

    Article  Google Scholar 

  • Gass SE, Roberts JM. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull. 2006;52:549–59.

    Article  CAS  PubMed  Google Scholar 

  • Gass SE, Roberts JM. Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J Mar Biol Assoc U K. 2011;91:831–5.

    Article  Google Scholar 

  • Gazeau F, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin S, Pörtner HO, Ross PM. Impacts of ocean acidification on marine shelled molluscs. Mar Biol. 2013;160:2207–45.

    Article  CAS  Google Scholar 

  • Glazier DS. Beyond the “3/4-power law”: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev. 2005;80:611–62. doi:10.1017/S1464793105006834.

    Article  PubMed  Google Scholar 

  • Gould SJ. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am Nat. 1971;105(942):113–36.

    Article  Google Scholar 

  • Grigg RW. Precious corals in Hawaii: discovery of a new bed and revised management measures for existing beds. Mar Fish Rev. 2002;64:13–20.

    Google Scholar 

  • Hohn S, Merico A. Modeling coral polyp calcification in relation to ocean acidification. Biogeosciences. 2012;9:4441–54.

    Article  CAS  Google Scholar 

  • Hovland M, Mortensen PB. Norske korallrev og prosesser i havbunnen (Norwegian coral reefs and seebed processes). Bergen: John Grieg; 1999. 167.

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.

    Article  Google Scholar 

  • Kaandorp JA. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol. 1999;134:295–306.

    Article  Google Scholar 

  • Kaandorp JA, Filatov M, Chindapol N. Simulating and quantifying the environmental influence on coral colony growth and form. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Springer Netherlands; 2011. p. 177–85.

    Google Scholar 

  • Kim K, Lasker HR. Allometry of resource capture in colonial cnidarians and constraints on modular growth. Funct Ecol. 1998;12:646–54.

    Article  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA, Freiwald A, Grehan A, Roberts JM. Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 715–29.

    Chapter  Google Scholar 

  • Kooijman SALM. Dynamic energy budget theory for metabolic organisation. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  • Larcom AA, McKean DL, Brooks JM, Fisher CR. Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep-Sea Res I. 2014;85:101–9.

    Article  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, Feuillassier L, Bideau M, Peru E, Romans P, Alcala F, Le Bris N. A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour. 2013;26:187–96.

    Article  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, Feuillassier L, Bideau M, Peru E, De la Vega E, Nedoncelle K, Romans P, Le Bris N. Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res II Top Stud Oceanogr. 2014;99:64–70.

    Article  Google Scholar 

  • Maier C. High recovery potential of the cold-water coral Lophelia pertusa. Coral Reefs. 2008;27:821.

    Article  Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M. A new method for measuring growth and age in the precious red coral Corallium rubrum (L). Coral Reefs. 2004;23:423–32.

    Article  Google Scholar 

  • Montero-Serra I, Linares C, García M, Pancaldi F, Frleta-Valić M, Ledoux J-B, et al. Harvesting effects, recovery mechanisms, and management strategies for a long-lived and structural precious coral. PLoS ONE. 2015;10(2):e0117250. doi:10.1371/journal.pone.0117250.

    Google Scholar 

  • Mouchi V, Crowley Q, Jackson A, Monteys X, de Rafelis M, Rueda J, Lartaud F. Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the cold-water coral Lophelia pertusa. J Quat Sci. 2014;29:803–14.

    Article  Google Scholar 

  • Mueller CE, Lundälv T, Middelburg JJ, van Oevelen D. The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One. 2013;8:e58660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Nadaoka K, Watanabe A. A coral polyp model of photosynthesis, respiration and calcification incorporating a transcellular ion transport mechanism. Coral Reefs. 2013;32:779–94.

    Article  Google Scholar 

  • Opresko DM, Sánchez JA. Caribbean shallow-water black corals (Cnidaria: Anthozoa: Antipatharia). Caribb J Sci. 2005;41:492–507.

    Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, Tsounis G, Allemand D, Gili JM. Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical scleractinian corals. J Exp Mar Biol Ecol. 2011;405:1–5.

    Article  Google Scholar 

  • Palmer RA. Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci. 1992;89:1379–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pätzold J. Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines). Coral Reefs. 1984;3:87–90.

    Article  Google Scholar 

  • Pecquerie L, Fablet R, De Pontual H, Bonhommeau S, Alunno-Bruscia M, Petitgas P, Kooijman SALM. Reconstructing individual food and growth histories from biogenic carbonates. Mar Ecol Prog Ser. 2012;447:151–64. doi:10.3354/meps09492.

    Article  Google Scholar 

  • Pons-Branchu E, Hillaire-Marcel C, Deschamps P, Ghaleb B, Sinclar D. Early diagenesis impact on precise U-series dating of deep-sea corals: example of a 100–200 year old Lophelia pertusa sample from the northeast Atlantic. Geochim Cosmochim Acta. 2005;69:4865–79.

    Article  CAS  Google Scholar 

  • Priori C, Mastascusa V, Erra F, Angiolillo M, Canese S, Santangelo G. Demography of deep-dwelling red coral populations: age and reproductive assessment of a high valuable marine species. Estuar Coast Shelf Sci. 2013;118:43–9.

    Article  Google Scholar 

  • Prouty NG, Roark EB, Buster NA, Ross SW. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico. Mar Ecol Prog Ser. 2011;423:101–15. doi:10.3354/meps08953.

    Article  Google Scholar 

  • Raddatz J, Liebetrau V, Rüggeberg A, Hathorne E, Krabbenhöft A, Eisenhauer A, Böhm F, Vollstaedt H, Fietzke J, Lopez-Correa M, Freiwald A, Dullo WC. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol. 2013;352:143–52.

    Article  CAS  Google Scholar 

  • Raimundo J, Vale C, Caetano M, Anes B, Carreiro-Silva M, Martins I, de Matos V, Porteiro FM. Element concentrations in cold-water gorgonians and black coral from Azores region. Deep-Sea Res II Top Stud Oceanogr. 2013;98:129–36.

    Article  CAS  Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG, Beukens R. Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia. 2002;471:125–31.

    Article  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Ingram BL. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser. 2006;327:1–14.

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Fallon SJ, Mucciarone DA. Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci U S A. 2009;106:5204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JM. Reef-aggregating behaviour by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs? J Mar Biol Assoc U K. 2005;85:813–9.

    Article  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  • Rossi S, Gili JM. Temporal variation and composition of near-bottom seston features in a Mediterranean coastal area. Estuar Coast Shelf Sci. 2005;65:385–95.

    Article  CAS  Google Scholar 

  • Rossi S, Tsounis G, Orejas C, Padron T, Gili JM, Bramanti L, Teixido N, Gutt J. Survey of deep-dwelling red coral (Corallium rubrum) population at Cap de Creus (NW Mediterranean). Mar Biol. 2008;154:533–45.

    Article  Google Scholar 

  • Sabatier P, Reyss JL, Hall-Spencer J, Colin C, Frank N, Tisnérat-Laborde N, Bordier L, Douville E. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences. 2012;9:1253–65.

    Article  CAS  Google Scholar 

  • Santangelo G, Carletti E, Maggi E, Bramanti L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser. 2003;248:99–108.

    Article  Google Scholar 

  • Santangelo G, Bramanti L, Iannelli M. Population dynamics and conservation biology of the over-exploited Mediterranean Red coral. J Theor Biol. 2007;244:416–23.

    Article  PubMed  Google Scholar 

  • Sebens KP. The regulation of asexual reproduction and indeterminate body size in the anemone Anthopleura elegantissima (Brandt). Biol Bull. 1980;158:370–82.

    Article  Google Scholar 

  • Sebens KP. The limits to indeterminate growth: an optimal size model to passive suspension feeders. Ecology. 1982;63:209–22.

    Article  Google Scholar 

  • Sebens KP. The ecology of indeterminate growth in animals. Annu Rev Ecol Syst. 1987;18:371–407.

    Article  Google Scholar 

  • Stearns SC. The evolution of life histories. Oxford: Oxford University Press; 1997.

    Google Scholar 

  • Thorsnes T, Fosså JH, Christensen O. Deep-water coral reefs. Acoustic recognition and geological setting. Hydro Int. 2004;8:26–9.

    Google Scholar 

  • Trivers RL. Parental investment and sexual selection. In: Campbell B, editor. Sexual selection and the descent of man, 1871–1971. Chicago: Aldine; 1972. p. 136–79.

    Google Scholar 

  • Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili JM. The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev. 2010;48:161–221.

    Article  Google Scholar 

  • Vertino A, Savini A, Rosso A, Di Geronimo I, Mastrototaro F, Sanfilippo R, Gay G, Etiope G. Benthic habitat characterization and distribution from two representative sites of the deep-water SML coral province (Mediterranean). Deep-Sea Res II Top Stud Oceanogr. 2010;57:380–96.

    Article  Google Scholar 

  • Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C. Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am Mineral. 2008;93:1799-1815. doi:10.2138/am.2008.2923.

    Article  CAS  Google Scholar 

  • Von Bertalanffy LA. Quantitative theory of organic growth. Hum Biol. 1938;10(2):181–213.

    Google Scholar 

  • Wainwright SA. Studies of the mineral phase of coral skeleton. Exp Cell Res. 1964;34:213–30.

    Article  CAS  Google Scholar 

  • Waller RG, Tyler PA. The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs. 2005;24:514–22.

    Article  Google Scholar 

  • Williams B, Risk MJ, Ross SW, Sulak KJ. Deep-water antipatharians: proxies of environmental change. Geology. 2006;34:773–6. doi:10.1130/G22685.1.

    Article  Google Scholar 

  • Williams B, Risk MJ, Ross SW, Sulak KJ. Stable isotope data from deep-water antipatharians: 400-year records from the southeastern coast of the United States of America. Bull Mar Sci. 2007;81:437–47.

    Google Scholar 

  • Wisshak M, Lopez Correa M, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A. Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep-Sea Res. 2009;56(3):374–407.

    Article  CAS  Google Scholar 

  • Zibrowius H, Montero M, Grasshoff M. la repartition du Corallium rubrum dans l’Atlantique. Thetis. 1984;11:163–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lartaud .

Editor information

Editors and Affiliations

Glossary

Allometry

The scaling relationship between parts of an organism and its whole.

Arborescent

Treelike in shape, generally aboveground or substratum.

Asexual reproduction

When fusion of gametes is not involved. Production of new individuals by any nonsexual method, e.g., binary fission, budding, schizogony, etc.

Asymbiotic

When symbiosis (mainly with symbiodinium) is absent.

Axial polyp

The longest and terminal polyp of a group of polyps.

Calcite

A form of calcium carbonate, crystallized in rhombohedric form.

Colonial organism

A collection of genetically identical units which live together in a closely connected fashion.

Convenient choice

In mathematical jargon, something you are allowed to choose arbitrarily, so you choose it in a way that makes your calculations easier.

Fecundity

The number of eggs, seeds, or offspring of the first stage in a life cycle produced by an individual organism.

Gemmation

A form of asexual reproduction or budding.

Genet

A group of genetically identical individuals that have grown in a given location, all originating asexually from a single ancestor.

Indeterminate growth

A type of growth for an organism or its part that does not terminate. By contrast determinate growth stops once a genetically predetermined structure has completed its formation.

Modular organisms

Organisms that grow by iterative growth of parts, e.g., leaves, shoots, and branches of a plant, or the polyps of a coral or bryozoan.

Module

A repeated unit of multicellular structure, normally arranged in a branch system.

Sclerochronology

The study of periodicities stored in accreted hard parts and skeletons. The range of periodicity can vary from circa-daily to annual scales providing potentially long records of historical variations (from years to centuries). Annual periodicity can give information on age and growth rates. Sclerochronology is analogous to the study of annual growth rings in trees, termed dendrochronology.

Sessile

Organisms that do not move and are fixed to the substrate.

Symbiotic

The close association between different biological species that benefit from each other.

Solitary

Corals that grow as a single polyp with a surrounding skeleton.

Unitary organism

Organisms that start their development in a determinate fashion and eventually reach a definite adult form.

Zooxanthellae

Photosynthetic algae that live in the tissue of most reef-building corals and have a mutualistic relationship with the coral.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Lartaud, F. et al. (2016). Growth Patterns in Long-Lived Coral Species. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics