Skip to main content

Chase-Away Hypothesis, The

  • Living reference work entry
  • First Online:
  • 193 Accesses

Definition

A coevolutionary race between signals that access preexisting vulnerabilities in receiver sensory/endocrine systems in order to manipulate reproductive traits and resistance to those signals due to receiver costs.

Introduction

A long-standing question in modern evolutionary biology began with Darwin (1871), who hypothesized that “…ornaments of many kinds—their organs for producing vocal or instrumental music—and their glands for emitting odours…serv [e] only to allure or excite the female.” Why these traits succeed remains an open question. Their attractiveness may be an adaptation by the choosier sex resulting from the ornament having provided information about species identity or qualities associated with a prospective mate (e.g., genetic, resource, parasite presence) (see Andersson 1994, for an overview). Alternatively, ornament attraction may not be an adaptation. Instead, “preferences” may be preexisting incidental sensory biases (Basolo 1990; Ryan 1990).

The chase-away...

This is a preview of subscription content, log in via an institution.

References

  • Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Arnqvist, G., & Rowe, L. (2013). Sexual conflict. Princeton: Princeton University Press.

    Google Scholar 

  • Basolo, A. L. (1990). Female preference predates the evolution of the sword in swordtail fish. Science, 250(4982), 808–810.

    Article  PubMed  Google Scholar 

  • Basolo, A. L. (1998). Evolutionary change in a receiver bias: A comparison of female preference functions. Proceedings of the Royal Society of London B: Biological Sciences, 265(1411), 2223–2228.

    Article  Google Scholar 

  • Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349–368.

    Google Scholar 

  • Burt, A., & Trivers, R. (2009). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., & Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373(6511), 241–244.

    Article  PubMed  Google Scholar 

  • Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution, 18(1), 41–47.

    Article  Google Scholar 

  • Fricke, C., Wigby, S., Hobbs, R., & Chapman, T. (2009). The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster. Journal of evolutionary biology, 22(2), 275–286.

    Article  PubMed  Google Scholar 

  • Gustafsson, L., & Pärt, T. (1990). Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs. Nature, 347, 279–281.

    Google Scholar 

  • Harshman, L. G., & Prout, T. (1994). Sperm displacement without sperm transfer in Drosophila melanogaster. Evolution, 758–766.

    Google Scholar 

  • Holland, B., & Rice, W. R. (1998). Perspective: chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 1–7.

    Google Scholar 

  • Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences, 96(9), 5083–5088.

    Article  Google Scholar 

  • Kuijper, B., Stewart, A. D., & Rice, W. R. (2006). The cost of mating rises nonlinearly with copulation frequency in a laboratory population of Drosophila melanogaster. J Evol Biol, 19, 1795–1802.

    Article  PubMed  Google Scholar 

  • Linder, J. E., & Rice, W. R. (2005). Natural selection and genetic variation for female resistance to harm from males. J Evol Biol., 18, 568–575. doi:10.1111/j.1420-9101.2004.00872.x.

    Article  PubMed  Google Scholar 

  • Lung, O., Tram, U., Finnerty, C. M., Eipper-Mains, M. A., Kalb, J. M., & Wolfner, M. F. (2002). The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression. Genetics, 160(1), 211–224.

    PubMed  PubMed Central  Google Scholar 

  • McClintock, W. J., & Uetz, G. W. (1996). Female choice and pre-existing bias: visual cues during courtship in two Schizocosa wolf spiders (Araneae: Lycosidae). Animal Behaviour, 52(1), 167–181.

    Article  Google Scholar 

  • Mueller, J. L., Linklater, J. R., Ravi Ram, K., Chapman, T., & Wolfner, M. F. (2008). Targeted Gene Deletion and Phenotypic Analysis of the Drosophila melanogaster Seminal Fluid Protease Inhibitor Acp62F. Genetics, 178(3), 1605–1614. doi.org/10.1534/genetics.107.083766.

    Google Scholar 

  • Orteiza, N., Linder, J. E., & Rice, W. R. (2005). Sexy sons from re-mating do not recoup the direct costs of harmful male interactions in the Drosophila melanogaster laboratory model system. Journal of evolutionary biology, 18(5), 1315–1323.

    Article  PubMed  Google Scholar 

  • Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45(4), 525–567.

    Article  Google Scholar 

  • Parker, G. A. (1979). Sexual selection and sexual conflict. In Sexual selection and reproductive competition in insects (pp. 123–166).

    Google Scholar 

  • Parker, G. A. (2006). Sexual conflict over mating and fertilization: an overview. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1466), 235–259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker, G. A., & Birkhead, T. R. (2013). Polyandry: The history of a revolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1613), 20120335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Partridge, L., & Fowler, K. (1990). Non-mating costs of exposure to males in female Drosophila melanogaster. Journal of Insect Physiology, 36(6), 419–425.

    Article  Google Scholar 

  • Rice, W. R., & Holland, B. (1997). The enemies within: Intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behavioral Ecology and Sociobiology, 41(1), 1–10.

    Article  Google Scholar 

  • Ryan, M. J. (1990). Sexual selection, sensory systems and sensory exploitation. Oxford surveys in evolutionary biology, 7, 157–195.

    Google Scholar 

  • Ryan, M. J., & Rand, A. S. (1993). Species recognition and sexual selection as a unitary problem in animal communication. Evolution, 647–657.

    Google Scholar 

  • Ryan, M. J., & Wagner Jr., W. E. (1987). Asymmetries in mating preferences between species: Female swordtails prefer heterospecific males. Science, 236(4801), 595–597.

    Article  PubMed  Google Scholar 

  • Sakaluk, S. K., Avery, R. L., & Weddle, C. B. (2006). Cryptic sexual conflict in gift-giving insects: Chasing the chase-away. The American Naturalist, 167(1), 94–104. doi:10.1086/498279.

    Article  PubMed  Google Scholar 

  • Simmons, L. W. (2001). Sperm competition and its evolutionary consequences in the insects. Princeton University Press.

    Google Scholar 

  • Sinervo, B., & Basolo, A. L. (1996). Testing adaptation using phenotypic manipulations. Adaptation, 149–185.

    Google Scholar 

  • Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man (pp. 136–179). London: Heinemann.

    Google Scholar 

  • Wigby, S., & Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15(4), 316–321.

    Article  PubMed  Google Scholar 

  • Yamane, T., Goenaga, J., Rönn, J. L., & Arnqvist, G. (2015). Male seminal fluid substances affect sperm competition success and female reproductive behavior in a seed beetle. PloS One, 10(4), e0123770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, J. F., Li, C., Xu, J., Liu, J. H., & Ye, H. (2014). Male accessory gland secretions modulate female post-mating behavior in the moth Spodoptera litura. Journal of Insect, 27, 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Holland, B. (2016). Chase-Away Hypothesis, The. In: Weekes-Shackelford, V., Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics