Skip to main content

Evolutionary Kernel Learning

  • Living reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining
  • 164 Accesses

Definition

Evolutionary kernel learning stands for using evolutionary algorithms to design the kernel function for a kernel method.

Motivation and Background

In kernel-based learning algorithms, the kernel function implicitly defines the feature space in which the algorithm operates. The kernel determines the scalar product and thereby the metric in the feature space. Choosing the right kernel function is crucial for the training accuracy and generalization performance of the learning machine. The choice may also influence the runtime and storage complexity during and after training.

The kernel is usually not adapted by the kernel method itself; choosing it is a model selectionproblem. In practice, the kernel function is selected from an a priori fixed class. When a parameterized family of kernel functions is considered, kernel adaptation reduces to finding appropriate parameters. The most frequently used method to determine these values is grid search. In simple grid search, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1):131–159

    Article  MATH  Google Scholar 

  • Eads DR, Hill D, Davis S, Perkins SJ, Ma J, Porter RB et al (2002) Genetic algorithms and support vector machines for time series classification. In: Bosacchi B, Fogel DB, Bezdek JC (eds) Applications and science of neural networks, fuzzy systems, and evolutionary computation V. Proceedings of the SPIE, vol 4787. SPIE–The International Society for Optical Engineering, Bellington, pp 74–85

    Chapter  Google Scholar 

  • Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64(C):107–117

    Article  Google Scholar 

  • Fröhlich H, Chapelle O, Schölkopf B (2004) Feature selection for support vector machines using genetic algorithms. Int J Artif Intell Tools 13(4):791–800

    Article  Google Scholar 

  • Gagné C, Schoenauer M, Sebag M, Tomassini M (2006) Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson TP, Beyer H-G, Burke E, Merelo-Guervós JJ, Whitley LD, Yao X (eds) Parallel problem solving from nature (PPSN IX). LNCS, vol 4193. Springer, Berlin, pp 1008–1017

    Google Scholar 

  • Glasmachers T, Igel C (2005) Gradient-based adaptation of general Gaussian kernels. Neural Comput 17(10):2099–2105

    Article  MathSciNet  MATH  Google Scholar 

  • Howley T, Madden M (2005) The genetic kernel support vector machine: description and evaluation. Artif Intell Rev 24(3):379–395

    Article  Google Scholar 

  • Igel C (2005) Multi-objective model selection for support vector machines. In: Coello Coello CA, Zitzler E, Hernandez Aguirre A (eds) Proceedings of the third international conference on evolutionary multi-criterion optimization (EMO 2005). LNCS, vol 3410. Springer, Berlin, pp 534–546

    Chapter  Google Scholar 

  • Igel C (2013) A note on generalization loss when evolving adaptive pattern recognition systems. IEEE Transact Evol Comput 17(3):345–352

    Article  Google Scholar 

  • Jong K, Marchiori E, van der Vaart A (2004) Analysis of proteomic pattern data for cancer detection. In: Raidl GR, Cagnoni S, Branke J, Corne DW, Drechsler R, Jin Y et al (eds) Applications of evolutionary computing. LNCS, vol 3005. Springer, Berlin, pp 41–51

    Chapter  Google Scholar 

  • Mersch B, Glasmachers T, Meinicke P, Igel C (2007) Evolutionary optimization of sequence kernels for detection of bacterial gene starts. Int J Neural Syst 17(5):369–381

    Article  Google Scholar 

  • Miller MT, Jerebko AK, Malley JD, Summers RM (2003) Feature selection for computer-aided polyp detection using genetic algorithms. In: Clough AV, Amini AA (eds) Medical imaging 2003: physiology and function: methods, systems, and applications. Proceedings of the SPIE, Santa Clara, vol 5031, pp 102–110

    Chapter  Google Scholar 

  • Pang S, Kasabov N (2004) Inductive vs. transductive inference, global vs. local models: SVM, TSVM, and SVMT for gene expression classification problems. In: International joint conference on neural networks (IJCNN 2004), vol 2. IEEE Press, Washington, DC, pp 1197–1202

    Google Scholar 

  • Runarsson TP, Sigurdsson S (2004) Asynchronous parallel evolutionary model selection for support vector machines. Neural Inf Process – Lett Rev 3(3):59–68

    Google Scholar 

  • Shi SYM, Suganthan PN, Deb K (2004) Multi-class protein fold recognition using multi-objective evolutionary algorithms. In: IEEE symposium on computational intelligence in bioinformatics and computational biology. IEEE Press, Washington, DC, pp 61–66

    Google Scholar 

  • Suttorp T, Igel C (2006) Multi-objective optimization of support vector machines. In: Jin Y (ed) Multi-objective machine learning. Studies in computational intelligence, vol 16. Springer, Berlin, pp 199–220

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Igel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Igel, C. (2016). Evolutionary Kernel Learning. In: Sammut, C., Webb, G. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7502-7_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7502-7_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-1-4899-7502-7

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics