Skip to main content

4-Hydroxynonenal in the Physiology and Pathology of Malaria

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

Synonyms

HNE; Lipid peroxidation

Definition

Oxidative stress is the consequence of imbalance between prooxidative reactions and antioxidative responses in the cell. In the pathophysiology of malaria, oxidative stress represents an important aspect of the host–parasite relationship which plays a key role in many fatal end points of the disease (reviewed in Percario et al. 2012; Becker et al. 2004). Alteration in redox metabolism may be important in two ways: Prooxidative reactions are central in the host response to successfully combat malaria infection. In malaria patients, plasma lipid peroxides are increased (Das et al. 1990) and red blood cells (RBCs) show increased lipid peroxidation and decreased antioxidative defense parameters (Das and Nanda 1999). On the other hand, overwhelming oxidative stress seems to be dangerous for the infected host cell and contribute to severe malaria forms with potentially fatal outcome.

Oxidative stress interferes with many cellular functions, such as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxynonenal

DC:

Dendritic cell

DHN:

Dihydroxynonene

GM-CSF:

Granulocyte–monocyte colony-stimulating factor

GSH:

Reduced glutathione

HETE:

Hydroxyeicosatetraenoic acid, hydroxylated arachidonic acid

HNA:

Hydroxynonenoic acid

HODE:

Hydroxyoctadecadienoic acid, hydroxylated linoleic acid

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

npRBC:

Nonparasitized RBC

P. falciparum :

Plasmodium falciparum

PUFA:

Polyunsaturated fatty acid

RB:

Residual body, natural hemozoin

RBC:

Red blood cell, erythrocyte

ROS:

Reactive oxygen species, oxygen radicals

Tf:

Transferrin

TLR:

Toll-like receptor

WBC:

White blood cell

PKC:

Protein kinase C

CD80, CD83, CD 40, CD1a, CD11c/18:

Surface antigens involved in antigen presentation

CD54:

ICAM-1, intercellular adherance molecule-1

MHC II:

Main histocompatibility complex class II , antigen presenting surface molecule

p53:

Transcription factor protein p53, cell cycle regulator

Epo-R:

Erythropoietin receptor

IL3-R:

Interleukin 3-receptor

TfR:

Transferrin receptor

SCFR:

Stem cell factor receptor

HZ:

Hemozoin, malarial pigment

CTRL:

Control

References

  • Aguilar R, Marrocco T, Skorokhod OA, Barbosa A, Nhabomba A, Manaca MN, Guinovart C, Quintó L, Arese P, Alonso P, Dobaño C, Schwarzer E (2014) Blood oxidative stress markers and Plasmodium falciparum malaria in non-immune African children. Br J Haematol. 164(3):438-50. doi: 10.1111/bjh.12636

    Google Scholar 

  • Arese P, Schwarzer E (1997) Malarial pigment (haemozoin): a very active “inert” substance. Ann Trop Med Parasitol 91:501–16

    Article  CAS  PubMed  Google Scholar 

  • Barrera V, Skorokhod OA, Baci D, Gremo G, Arese P, Schwarzer E (2011) Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: a new paradigm of hemozoin action. Blood 117(21):5674–82

    Article  CAS  PubMed  Google Scholar 

  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34(2):163–89

    Article  CAS  PubMed  Google Scholar 

  • Benedetti A, Comporti M, Esterbauer H (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from peroxidation of liver microsomal lipids. Biochim Biophys Acta 620:281–96

    Article  CAS  PubMed  Google Scholar 

  • Benedict SH, Cool KM, Dotson AL, Chan MA. Immune accessory proteins. In: Encyclopedia of life sciences. Wiley. http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000923.pub2/full

  • Buffinton GD, Hunt NH, Cowden WB, Clark IA (1988) Detection of short-chain carbonyl products of lipid peroxidation from malaria-parasite (Plasmodium vinckei)-infected red blood cells exposed to oxidative stress. Biochem J 249:63–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casals-Pascual C, Kai O, Cheung JO, Williams S, Lowe B, Nyanoti M, Williams TN, Maitland K, Molyneux M, Newton CR, Peshu N, Watt SM, Roberts DJ (2006) Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood 108:2569–77

    Article  CAS  PubMed  Google Scholar 

  • Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung FL, Chen HJ, Guttenplan JB, Nishikawa A, Hard GC (1993) 2,3-epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis 14(10):2073–7

    Article  CAS  PubMed  Google Scholar 

  • Clark IA, Butcher GA, Buffinton GD, Hunt NH, Cowden WB (1987) Toxicity of certain products of lipid peroxidation to the human malaria parasite Plasmodium falciparum. Biochem Pharmacol 36(4):543–6

    Article  CAS  PubMed  Google Scholar 

  • Das BS, Nanda NK (1999) Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93(1):58–62

    Article  CAS  PubMed  Google Scholar 

  • Das BS, Thurnham DI, Patnaik JK, Das DB, Satpathy R, Bose TK (1990) Increased plasma lipid peroxidation in riboflavin-deficient, malaria infected children. Am J Clin Nutr 51:859–63

    CAS  PubMed  Google Scholar 

  • Di Mauro C, Cavalli G, Curzio M, Ferretti C, Mengozzi G, Rossi MA, Paradisi L, Dianzani MU (1995) Evidences of 4-hydroxynonenal involvement in modulation of phagocyte activities. Int J Tissue React 17(2):61–72

    PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–4

    Article  CAS  PubMed  Google Scholar 

  • Giribaldi G, Ulliers D, Schwarzer E, Roberts I, Piacibello W, Arese P (2004) Hemozoin- and 4-hydroxynonenal-mediated inhibition of erythropoiesis. Possible role in malarial dyserythropoiesis and anemia. Haematologica 89(4):492–3

    CAS  PubMed  Google Scholar 

  • Kapishnikov S, Weiner A, Shimoni E, Guttmann P, Schneider G, Dahan-Pasternak N, Dzikowski R, Leiserowitz L, Elbaum M (2012) Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum. Proc Natl Acad Sci U S A 109(28):11188–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Méndez D, Hernáez ML, Kamali AN, Diez A, Puyet A, Bautista JM (2012) Differential carbonylation of cytoskeletal proteins in blood group O erythrocytes: potential role in protection against severe malaria. Infect Genet Evol 12(8):1780–7

    Article  PubMed  Google Scholar 

  • Miller CM, Carney CK, Schrimpe AC, Wright DW (2005) Beta-Hematin (hemozoin) mediated decomposition of polyunsaturated fatty acids to 4-hydroxy-2-nonenal. Inorg Chem 44(7):2134–6

    Article  CAS  PubMed  Google Scholar 

  • Percario S, Moreira DR, Gomes BAQ, Ferreira MES, Goncalves AC, Laurindo PSOC, Vilhena TC, Dolabela MF, Green MD (2012) Oxidative stress in malaria. Int J Mol Sci 13:16346–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pizzimenti S, Laurora S, Briatore F, Ferretti C, Dianzani MU, Barrera G (2002) Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation. Free Radic Biol Med 32:233–45

    Article  CAS  PubMed  Google Scholar 

  • Poli G, Schaur RJ, Siems WG, Leonarduzzi G (2008) 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev 28(4):569–631

    Article  CAS  PubMed  Google Scholar 

  • Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator-activated receptor (PPARγ) as a regulator of monocyte/macrophage function. J Leukoc Biol 66:733–9

    CAS  PubMed  Google Scholar 

  • Schauenstein E, Esterbauer H, Jaag G, Taufer M (1964) The effect of aldehydes on normal and malignant cells. 1st report hydroxyl-octenal, a new fat-aldehyde. Monatsh Chem 95:180–3

    Article  CAS  Google Scholar 

  • Schrimpe AC, Wright DW (2009) Comparative analysis of gene expression changes mediated by individual constituents of hemozoin. Chem Res Toxicol 22(3):433–45

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, Arese P (1992) Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med 176(4):1033–41

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer E, Turrini F, Giribaldi G, Cappadoro M, Arese P (1993) Phagocytosis of P. falciparum malarial pigment hemozoin by human monocytes inactivates monocyte protein kinase C. Biochim Biophys Acta 1181(1):51–4

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer E, Müller O, Arese P, Siems WG, Grune T (1996) Increased levels of 4-hydroxynonenal in human monocytes fed with malarial pigment hemozoin. A possible clue for hemozoin toxicity. FEBS Lett 388(2–3):119–22

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer E, Alessio M, Ulliers D, Arese P (1998) Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect Immun 66(4):1601–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzer E, Kuhn H, Valente E, Arese P (2003) Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 101(2):722–8

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer E, Skorokhod OA, Barrera V, Arese P (2008) Hemozoin and the human monocyte – a brief review of their interactions. Parassitologia 50(1–2):143–5

    CAS  PubMed  Google Scholar 

  • Siems WG, Pimenov AM, Esterbauer H, Grune T (1998) Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in thymocytes as an effective secondary antioxidative defense mechanism. J Biochem (Tokyo) 123:534–9

    Article  CAS  Google Scholar 

  • Skorokhod OA, Alessio M, Mordmüller B, Arese P, Schwarzer E (2004) Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. J Immunol 173(6):4066–74

    Article  CAS  PubMed  Google Scholar 

  • Skorokhod O, Schwarzer E, Grune T, Arese P (2005) Role of 4-hydroxynonenal in the hemozoin-mediated inhibition of differentiation of human monocytes to dendritic cells induced by GM-CSF/IL-4. Biofactors 24(1–4):283–9

    Article  CAS  PubMed  Google Scholar 

  • Skorokhod A, Schwarzer E, Gremo G, Arese P (2007) HNE produced by the malaria parasite Plasmodium falciparum generates HNE–protein adducts and decreases erythrocyte deformability. Redox Rep 12:73–5

    Article  CAS  PubMed  Google Scholar 

  • Skorokhod OA, Caione L, Marrocco T, Migliardi G, Barrera V, Arese P, Piacibello W, Schwarzer E (2010) Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood 116(20):4328–37

    Article  CAS  PubMed  Google Scholar 

  • Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1(1):145–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida K (2003) 4-hydroxynonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–43

    Article  CAS  PubMed  Google Scholar 

  • Urban BC, Mwangi T, Ross A, Kinyanjui S, Mosobo M, Kai O, Lowe B, Marsh K, Roberts DJ (2001) Peripheral blood dendritic cells in children with acute Plasmodium falciparum malaria. Blood 98(9):2859–61

    Article  CAS  PubMed  Google Scholar 

  • Uyoga S, Skorokhod OA, Opiyo M, Orori EN, Williams TN, Arese P, Schwarzer E (2012) Transfer of 4-hydroxynonenal from parasitized to non-parasitized erythrocytes in rosettes. Proposed role in severe malaria anemia. Br J Haematol 157(1):116–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wickramasinghe SN, Abdalla SH (2000) Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 13:277–99

    Article  CAS  PubMed  Google Scholar 

  • Winter CK, Segall HJ, Haddon WF (1986) Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res 46(11):5682–6

    CAS  PubMed  Google Scholar 

  • Zhang X, Young HA (2002) PPAR and immune system: what do we know? Int Immunopharmacol 2:1029–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelin Schwarzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Schwarzer, E., Arese, P., Skorokhod, O. (2013). 4-Hydroxynonenal in the Physiology and Pathology of Malaria. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_96-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics