Skip to main content

Alteration of the Red Blood Cell Membrane

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria
  • 545 Accesses

Synonyms

Host cell membrane alteration; Host cell membrane modification; Infected erythrocyte; Infected red blood cell

Definition

The malaria parasite after invasion starts modifying red blood cells (RBC), which is vital for parasite survival, reproduction, and pathogenesis. Alterations of cell membrane in infected red blood cells (iRBCs) are formation of knob, Maurer’s cleft, and caveola-vesicle complex, modification in membrane cytoskeleton and deformability properties, and changes in the permeability properties of the iRBC membrane. These alterations require a larger number of parasite proteins that have to be exported from parasite periphery to the iRBC’s membrane. The functional characterization of exported proteins that modify iRBC would provide important insights into the host cell remodeling aspects of parasite biology.

Introduction

Malaria still remains the most serious and widespread parasitic disease of humans caused by five species of Plasmodium, of which Plasmodium...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aikawa M. Morphological changes in erythrocytes induced by malarial parasites. Biol Cell. 1988;64:173–81.

    Article  CAS  PubMed  Google Scholar 

  • Aikawa M, Miller LH, Rabbege J. Caveola–vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P. cynomolgi. Unique structures related to Schuffner’s dots. Am J Pathol. 1975;79:285–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aikawa M, Hsieh CL, Miller LH. Ultrastructural changes of the erythrocyte membrane in ovale-type malarial parasites. J Parasitol. 1977;63:152–4.

    Article  CAS  PubMed  Google Scholar 

  • An X, Mohandas N. Disorders of red cell membrane. Br J Haematol. 2008;141:367–75.

    CAS  PubMed  Google Scholar 

  • Atkinson CT, Aikawa M. Ultrastructure of malaria-infected erythrocytes. Blood Cells. 1990;16:351–68.

    CAS  PubMed  Google Scholar 

  • Atkinson CT, Aikawa M, Perry G, Fujino T, Bennett V, Davidson EA, Howard RJ. Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. Eur J Cell Biol. 1988;45:192–9.

    CAS  PubMed  Google Scholar 

  • Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Behari R, Haldar K. Plasmodium falciparum: protein localization along a novel, lipid-rich tubovesicular membrane network in infected erythrocytes. Exp Parasitol. 1994;79:250–9.

    Article  CAS  PubMed  Google Scholar 

  • Bennett V, Gilligan DM. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, van Ooij C, Balu B, Adams JH, Haldar K. Maurer’s clefts of Plasmodium falciparum are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte. Blood. 2008;111:2418–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chishti AH, Andrabi KI, Derick LH, Palek J, Liu SC. Isolation of skeleton-associated knobs from human red blood cells infected with malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 1992;52:283–7.

    Article  CAS  PubMed  Google Scholar 

  • Coatney GR. The simian malarias: zoonoses, anthroponoses, or both? Am J Trop Med Hyg. 1971;20:795–803.

    CAS  PubMed  Google Scholar 

  • Collins WE, Jeffery GM. Plasmodium ovale: parasite and disease. Clin Microbiol Rev. 2005;18:570–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins WE, Jeffery GM. Plasmodium malariae: parasite and disease. Clin Microbiol Rev. 2007;20:579–92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Da Silva E, Foley M, Dluzewski AR, Murray LJ, Anders RF, Tilley L. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Mol Biochem Parasitol. 1994;66:59–69.

    Article  PubMed  Google Scholar 

  • Dao M, Lim CT, Suresh S. Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood. 2003;101:112–8.

    Article  CAS  PubMed  Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS. A newly discovered protein export machine in malaria parasites. Nature. 2009;459:945–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Decherf G, Egee S, Staines HM, Ellory JC, Thomas SL. Anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis. 2004;32:366–71.

    Article  CAS  PubMed  Google Scholar 

  • Desai SA, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature. 2000;406:1001–5.

    Article  CAS  PubMed  Google Scholar 

  • Favaloro JM, Coppel RL, Corcoran LM, Foote SJ, Brown GV, Anders RF, Kemp DJ. Structure of the RESA gene of Plasmodium falciparum. Nucleic Acids Res. 1986;14:8265–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci U S A. 2011;108:35–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Figtree M, Lee R, Bain L, Kennedy T, Mackertich S, Urban M, Cheng Q, Hudson BJ. Plasmodium knowlesi in human, Indonesian Borneo. Emerg Infect Dis. 2010;16:672–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaetani M, Mootien S, Harper S, Gallagher PG, Speicher DW. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood. 2008;111:5712–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood. 2002;99:1060–3.

    Article  CAS  PubMed  Google Scholar 

  • Glenister FK, Fernandez KM, Kats LM, Hanssen E, Mohandas N, Coppel RL, Cooke BM. Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood. 2009;113:919–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haase S, Herrmann S, Gruring C, Heiber A, Jansen PW, Langer C, Treeck M, Cabrera A, Bruns C, Struck NS, Kono M, Engelberg K, Ruch U, Stunnenberg HG, Gilberger TW, Spielmann T. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol Microbiol. 2009;71:1003–17.

    Article  CAS  PubMed  Google Scholar 

  • Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D, Kenangalem E, Renia L, Snounou G, Price RN, Anstey NM, Russell B. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J Infect Dis. 2009;199:445–50.

    Article  PubMed  Google Scholar 

  • Hanssen E, Hawthorne P, Dixon MW, Trenholme KR, McMillan PJ, Spielmann T, Gardiner DL, Tilley L. Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer’s cleft organelles. Mol Microbiol. 2008a;69:938–53.

    Article  CAS  PubMed  Google Scholar 

  • Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, Tilley L. Electron tomography of the Maurer’s cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol Microbiol. 2008b;67:703–18.

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne PL, Trenholme KR, Skinner-Adams TS, Spielmann T, Fischer K, Dixon MW, Ortega MR, Anderson KL, Kemp DJ, Gardiner DL. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts. Mol Biochem Parasitol. 2004;136:181–9.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SM, Feng JJ. How malaria parasites reduce the deformability of infected red blood cells. Biophys J. 2012;103:1–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jongwutiwes S, Putaporntip C, Iwasaki T, Sata T, Kanbara H. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect Dis. 2004;10:2211–3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kilejian A, Rashid MA, Aikawa M, Aji T, Yang YF. Selective association of a fragment of the knob protein with spectrin, actin and the red cell membrane. Mol Biochem Parasitol. 1991;44:175–81.

    Article  CAS  PubMed  Google Scholar 

  • Kilili GK, LaCount DJ. An erythrocyte cytoskeleton-binding motif in exported Plasmodium falciparum proteins. Eukaryot Cell. 2011;10:1439–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyes SA, Rowe JA, Kriek N, Newbold CI. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999;96:9333–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanzer M, Wickert H, Krohne G, Vincensini L, Braun BC. Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol. 2006;36:23–36.

    Article  CAS  PubMed  Google Scholar 

  • Luchavez J, Espino F, Curameng P, Espina R, Bell D, Chiodini P, Nolder D, Sutherland C, Lee KS, Singh B. Human infections with Plasmodium knowlesi, the Philippines. Emerg Infect Dis. 2008;14:811–3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lysenko AJ, Beljaev AE. An analysis of the geographical distribution of Plasmodium ovale. Bull World Health Organ. 1969;40:383–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magowan C, Nunomura W, Waller KL, Yeung J, Liang J, Van Dort H, Low PS, Coppel RL, Mohandas N. Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane. Biochim Biophys Acta. 2000;1502:461–70.

    Article  CAS  PubMed  Google Scholar 

  • Maier AG, Rug M, O’Neill MT, Beeson JG, Marti M, Reeder J, Cowman AF. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood. 2007;109:1289–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, Newbold C, Beeson JG, Craig A, Crabb BS, Cowman AF. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell. 2008;134:48–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol. 2009;7:341–54.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Matsuda S, Yoshida Y. Ultrastructure of human erythrocytes infected with Plasmodium ovale. Am J Trop Med Hyg. 1986;35:697–703.

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Aikawa M, Barnwell JW. Immunoelectron microscopic localization of vivax malaria antigens to the clefts and caveola-vesicle complexes of infected erythrocytes. Am J Trop Med Hyg. 1988;39:317–22.

    CAS  PubMed  Google Scholar 

  • Mayer C, Slater L, Erat MC, Konrat R, Vakonakis I. Structural analysis of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) intracellular domain reveals a conserved interaction epitope. J Biol Chem. 2012;287:7182–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller LH, Good MF, Milon G. Malaria pathogenesis. Science. 1994;264:1878–83.

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19:156–67.

    Article  CAS  PubMed  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KS, Lim CT, Milon G, David PH, Mercereau-Puijalon O, Bonnefoy S, Suresh S. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci U S A. 2007;104:9213–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112:3939–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale–the “bashful” malaria parasites. Trends Parasitol. 2007;23:278–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nash GB, Wyard SJ. Measurement of erythrocyte membrane elasticity as a diagnostic aid in Duchenne muscular dystrophy. J Med Genet. 1982;19:262–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nash GB, O’Brien E, Gordon-Smith EC, Dormandy JA. Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood. 1989;74:855–61.

    CAS  PubMed  Google Scholar 

  • Ng OT, Ooi EE, Lee CC, Lee PJ, Ng LC, Pei SW, Tu TM, Loh JP, Leo YS. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg Infect Dis. 2008;14:814–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, Liu S, Chishti AH. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol. 2000;108:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Parish LA, Mai DW, Jones ML, Kitson EL, Rayner JC. A member of the Plasmodium falciparum PHIST family binds to the erythrocyte cytoskeleton component band 4.1. Malar J. 2013;12:160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pei X, Guo X, Coppel R, Mohandas N, An X. Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem. 2007;282:26754–8.

    Article  CAS  PubMed  Google Scholar 

  • Petter M, Haeggstrom M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren M. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol. 2007;156:51–61.

    Article  CAS  PubMed  Google Scholar 

  • Prajapati SK, Singh OP. Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol Dis. 2013;51:195–202.

    Article  CAS  PubMed  Google Scholar 

  • Przyborski JM, Wickert H, Krohne G, Lanzer M. Maurer’s clefts–a novel secretory organelle? Mol Biochem Parasitol. 2003;132:17–26.

    Article  CAS  PubMed  Google Scholar 

  • Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS, Lanzer M. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J. 2005;24:2306–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saliba KJ, Horner HA, Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem. 1998;273:10190–5.

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, Thomas A, Conway DJ. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363:1017–24.

    Article  PubMed  Google Scholar 

  • Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, Gardiner DL. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell. 2006;17:3613–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spycher C, Klonis N, Spielmann T, Kump E, Steiger S, Tilley L, Beck HP. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J Biol Chem. 2003;278:35373–83.

    Article  CAS  PubMed  Google Scholar 

  • Spycher C, Rug M, Pachlatko E, Hanssen E, Ferguson D, Cowman AF, Tilley L, Beck HP. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol Microbiol. 2008;68:1300–14.

    Article  CAS  PubMed  Google Scholar 

  • Staines HM, Powell T, Thomas SL, Ellory JC. Plasmodium falciparum-induced channels. Int J Parasitol. 2004;34:665–73.

    Article  CAS  PubMed  Google Scholar 

  • Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, Egee S, Ginsburg H, Hill DA, Huber SM, Kirk K, Lang F, Lisk G, Oteng E, Pillai AD, Rayavara K, Rouhani S, Saliba KJ, Shen C, Solomon T, Thomas SL, Verloo P, Desai SA. Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol. 2007;37:475–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streekstra GJ, Dobbe JG, Hoekstra AG. Quantification of the fraction poorly deformable red blood cells using ektacytometry. Opt Express. 2010;18:14173–82.

    Article  CAS  PubMed  Google Scholar 

  • Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100.

    Article  CAS  PubMed  Google Scholar 

  • Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, Udomsangpetch R. The deformability of red blood cells parasitized by Plasmodium falciparum and P vivax. J Infect Dis. 2004;189:190–4.

    Article  PubMed  Google Scholar 

  • Tsarukyanova I, Drazba JA, Fujioka H, Yadav SP, Sam-Yellowe TY. Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol Res. 2009;104:875–91.

    Article  PubMed  Google Scholar 

  • Udagama PV, Atkinson CT, Peiris JS, David PH, Mendis KN, Aikawa M. Immunoelectron microscopy of Schuffner’s dots in Plasmodium vivax-infected human erythrocytes. Am J Pathol. 1988;131:48–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van den Eede P, Van HN, Van Overmeir C, Vythilingam I, Duc TN, Hungle X, Manh HN, Anne J, D’Alessandro U, Erhart A. Human Plasmodium knowlesi infections in young children in central Vietnam. Malar J. 2009;8:249.

    Article  PubMed Central  PubMed  Google Scholar 

  • Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood. 2003;102:1911–4.

    Article  CAS  PubMed  Google Scholar 

  • Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, Cooke BM. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim Biophys Acta. 2010;1798:861–71.

    Article  CAS  PubMed  Google Scholar 

  • Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC, Culvenor JG, Waller RF, Cowman AF. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J. 2000;19:2813–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wickert H, Krohne G. The complex morphology of Maurer’s clefts: from discovery to three-dimensional reconstructions. Trends Parasitol. 2007;23:502–9.

    Article  PubMed  Google Scholar 

  • Wickert H, Gottler W, Krohne G, Lanzer M. Maurer’s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur J Cell Biol. 2004;83:567–82.

    Article  PubMed  Google Scholar 

  • Winter G, Kawai S, Haeggstrom M, Kaneko O, von Euler A, Kawazu S, Palm D, Fernandez V, Wahlgren M. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med. 2005;201:1853–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Kumar Prajapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Prajapati, S.K. (2014). Alteration of the Red Blood Cell Membrane. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics