Skip to main content

Dynamics of Mobile Ions in Materials with Disordered Structures - the Case of Silver Iodide and the Two Universalities

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 123 Accesses

Introduction

In solid electrolytes that exhibit the key property of structural disorder, three types of nonvibrational motion of the mobile ions may be discerned. These are:

  1. 1.

    A “liquid-like” motion, as for instance in alpha silver iodide

  2. 2.

    A correlated hopping motion, which leads to macroscopic transport

  3. 3.

    A correlated localized motion, which creates the Nearly Constant Loss effect

By comparison, the situation is much simpler in ionic crystals with comparatively low degrees of disorder, in which the mobile point defects may be regarded as “random walkers.” An example of such a material is crystalline silver bromide at 200 °C [1].

The Case of Alpha Silver Iodide

In marked contrast to silver bromide, silver iodide in its high-temperature alpha phase, α-AgI, is structurally disordered, see below. It is indeed the archetypal fast ion conductor. The unexpected properties of α-AgI were discovered by C. Tubandt and E. Lorenz in 1914 [2], on the occasion of their measurements of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funke K, Lauxtermann T, Wilmer D, Bennington SM (1995) Creation and recombination of Frenkel defects in AgBr. Z Naturforsch A 50:509

    CAS  Google Scholar 

  2. Tubandt C, Lorenz E (1914) Molekularzustand und elektrisches Leitvermögen kristallisierter Salze. Z Physik Chem 87(513):543

    CAS  Google Scholar 

  3. Tubandt C (1932) Leitfähigkeit und Überführungszahlen in festen Elektrolyten. In: Wien W, Harms F (eds) Handbuch der Experimentalphysik XII, part 1. Akadem Verlagsges, Leipzig

    Google Scholar 

  4. Strock LW (1934) Kristallstruktur des Hochtemperatur-Jodsilbers α-AgJ. Z physik Chem B 25 (1934) 411 and B 31 (1936) 132

    Google Scholar 

  5. Cava RJ, Reidinger F, Wuensch BJ (1977) Single-crystal neutron-diffraction study of AgI between 23° and 300° C. Solid State Comm 24:411

    CAS  Google Scholar 

  6. Funke K, Höch A, Lechner RE (1980) Quasielastic neutron scattering from a single crystal of alpha silver iodide. J de Physique 41:C6–17

    Google Scholar 

  7. Funke K, Roemer H, Schwarz D, Unruh H-G, Luther G (1983) On the microwave conductivity of alpha silver iodide, part II: complex conductivity by measurement of the complex transmission factor. Solid State Ion 11:254

    Google Scholar 

  8. Funke K, Banhatti RD, Brückner S, Cramer C, Krieger C, Mandanici A, Martiny C, Ross I (2002) Ionic motion in materials with disordered structures – conductivity spectra and the concept of mismatch and relaxation. Phys Chem Chem Phys 4:3155

    CAS  Google Scholar 

  9. Funke K, Banhatti RD (2006) Ionic motion in materials with disordered structures. Solid State Ion 177:1551

    CAS  Google Scholar 

  10. Šantić A, Wrobel W, Mutke M, Banhatti RD, Funke K (2009) Frequency-dependent fluidity and conductivity of an ionic liquid. Phys Chem Chem Phys 11:5930

    Google Scholar 

  11. Laughman DM, Banhatti RD, Funke K (2010) New nearly constant loss feature detected in glass at low temperature. Phys Chem Chem Phys 12:14102

    CAS  Google Scholar 

  12. Banhatti RD, Laughman D, Badr L, Funke K (2011) Nearly constant loss effect in sodium borate and silver meta-borate glasses: new insights. Solid State Ion 192:70

    CAS  Google Scholar 

  13. Taylor HE (1956) The dielectric relaxation spectrum of glass. Trans Faraday Soc 52:873

    CAS  Google Scholar 

  14. Isard JO (1970) Dielectric dispersion in amorphous conductors. J Non-Cryst Solids 4:357

    CAS  Google Scholar 

  15. Kahnt H (1991) Ionic transport in oxide glasses and frequency dependence of conductivity. Ber Bunsenges Phys Chem 95:1021

    CAS  Google Scholar 

  16. Summerfield S (1985) Universal low-frequency behaviour in the a.c. hopping conductivity of disordered systems. Philos Mag B 52:9

    Google Scholar 

  17. Jonscher AK (1975) The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys Status Solidi A 32:665

    CAS  Google Scholar 

  18. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673

    CAS  Google Scholar 

  19. Funke K, Banhatti RD (2008) Translational and localized ionic motion in materials with disordered structures. Solid State Sci 10:790

    CAS  Google Scholar 

  20. Ngai KL (1979) Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter, parts I and II. Comments Solid State Phys 9 (1979) 127 and 9 (1980) 141

    Google Scholar 

  21. Ngai KL (2003) The dynamics of ions in glasses: importance of ion-ion interactions. J Non-Cryst Solids 323:120

    CAS  Google Scholar 

  22. Kubo R (1957) Linear response theory of irreversible processes. J Phys Soc Jpn 12:570

    Google Scholar 

  23. Meyer M, Maass P, Bunde A (1993) Spin-lattice relaxation: non-Bloembergen-Purcell-Pound behavior by structural disorder and Coulomb interactions. Phys Rev Lett 71:573

    CAS  Google Scholar 

  24. Maass P, Meyer M, Bunde A (1995) Nonstandard relaxation behavior in ionically conducting materials. Phys Rev B 51:8164

    CAS  Google Scholar 

  25. Knödler D, Pendzig P, Dieterich W (1996) Ion dynamics in structurally disordered materials: effects of random Coulombic traps. Solid State Ionics 86–88:29

    Google Scholar 

  26. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456

    Google Scholar 

  27. Schrøder TB, Dyre JC (2002) Computer simulations of the random barrier model. Phys Chem Chem Phys 4:3173

    Google Scholar 

  28. Funke K (1993) Review: Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111

    CAS  Google Scholar 

  29. Banhatti RD, Funke K (2004) Dielectric function and localized diffusion in fast-ion conducting glasses. Solid State Ion 175:661

    CAS  Google Scholar 

  30. Lee W-K, Liu JF, Nowick AS (1991) Limiting behavior of ac conductivity in ionically conducting crystals and glasses: A new universality. Phys Rev Lett 67:1559

    CAS  Google Scholar 

  31. Nowick AS, Lim BS (2001) Electrical relaxations: simple versus complex ionic systems. Phys Rev B 63:184115

    Google Scholar 

  32. Pollak M, Pike GE (1972) ac conductivity of glasses. Phys Rev Lett 28:1449

    CAS  Google Scholar 

  33. Jain H, Krishnaswami S (1998) Composition dependence of frequency power law of ionic conductivity of glasses. Solid State Ion 105:129

    CAS  Google Scholar 

  34. Jain H (1999) ‘Jellyfish’ atom movement in inorganic glasses. Met Mater Process 11:317

    CAS  Google Scholar 

  35. Rinn B, Dieterich W, Maass M (1998) Stochastic modeling of ion dynamics in complex systems: dipolar effects. Philos Mag B 77:1283

    CAS  Google Scholar 

  36. Höhr T, Pendzig P, Dieterich W, Maass P (2002) Dynamics of disordered dipolar systems. Phys Chem Chem Phys 4:3168

    Google Scholar 

  37. Laughman DM, Banhatti RD, Funke K (2009) Nearly constant loss effects in borate glasses. Phys Chem Chem Phys 11:3158

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Funke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Funke, K. (2014). Dynamics of Mobile Ions in Materials with Disordered Structures - the Case of Silver Iodide and the Two Universalities. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_474

Download citation

Publish with us

Policies and ethics