Skip to main content

Animal Skeletons, Advent

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 325 Accesses

Synonyms

Early biomineralization event; Small shelly fossils

Definition

Animal skeleton. Biologically, an animal skeleton is a hard or rigid framework that could provide protection and support in many types of animals. Most of the animal skeletons are mineralized, but some of them may not be mineralized (e.g., some annelid tubes being agglutinated). They could be subdivided into exoskeletons and endoskeletons, excluding hydroskeletons. The “skeletons” of resistant organic biopolymers are not included herein.

Exoskeleton . Exoskeletons are external hard parts. They may enclose the soft tissues and organs of the body, or may be external sclerites.

Endoskeleton . Endoskeletons are internal hard parts (typical of many vertebrates). Most of the endoskeletons are generally surrounded by skin and musculature.

Small shelly fossils(SSF or SSFs) . A non-taxonomic term was first used by Matthews and Missarzhevsky in the title of their review paper in 1975 to denote the earliest...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A., 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 37, 431–434.

    Article  Google Scholar 

  • Bengtson, S., 2004. Early skeletal fossils. In Lipps, J. H., and Waggoner, B. M. (eds.), Neoproterozoic- Cambrian Biological Revolutions. Palentological Society Papers, 10, 67–78.

    Google Scholar 

  • Bengtson, S., and Conway Morris, S., 1992. Early radiation of biomineralizing phyla. In Lipps, J. H., and Signor, P. W. (eds), Origin and Early Evolution of the Metazoa. New York and London: Plenum Press, pp. 447–481.

    Google Scholar 

  • Brasier, M., Green, O., and Shields, G., 1997. Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25, 303–306.

    Article  Google Scholar 

  • Chen, Z., Bengtson, S., Zhou, C. M., Hua, H., and Yue, Z., 2007. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia, 41, 37–45.

    Article  Google Scholar 

  • Cook, P. J., and Shergold, J. H., 1984. Phosphorous, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308, 231–236.

    Article  Google Scholar 

  • Gehling, J. G., and Rigby, K. J., 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70, 185–195.

    Google Scholar 

  • Germs, G. J. B., 1972. New shelly fossils from Nama Group, South west Africa. American Journal of Science, 272, 752–761.

    Article  Google Scholar 

  • Glaessner, M. F., 1963. Major trends in the evolution of the Foraminifera. In von Koenigswald, G. H. R. (ed.), Evolutionary Trends in Foraminifera. Amsterdam: Elsevier, pp. 9–24.

    Google Scholar 

  • Grant, S. W. F., 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290A, 261–294.

    Google Scholar 

  • Grotzinger, J. P., Watters, W. A., and Knoll, A. H., 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26, 334–359.

    Article  Google Scholar 

  • Hua, H., Chen, Z., Yuan, X. L., Zhang, L. Y., and Xiao, S. H., 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33, 277–280.

    Article  Google Scholar 

  • Kirschvink, J. L., and Hagadorn, J. W., 2000. A grand unified theory of biomineralization. In Bäuerlein, E. (ed.), The Biomineralisation of Nano- and Micro-Structures. Weinheim: Wiley-VCH Verlag, pp. 139–150.

    Google Scholar 

  • Knoll, A. H., 2003. Biomineralization and Evolutionary History. Reviews in Mineralogy and Geochemistry, 54, 329–355.

    Article  Google Scholar 

  • Li, G. X., Steiner, M., Zhu, X. J., Yang, A. H., Wang, H. F., and Erdtmann, B.-D., 2007. Early Cambrian metazoan fossil record of South China: Generic diversity and radiation patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 229–249.

    Article  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989. On biomineraliztion. Oxford: Oxford University Press.

    Google Scholar 

  • Matthews, S. C., and Missarzhevsky, V. V., 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society, 131, 289–304.

    Article  Google Scholar 

  • Porter, S. M., 2007. Seawater chemistry and early carbonate biomineralization. Science, 316, 1302.

    Article  Google Scholar 

  • Qian, Y., 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Beijing: Science Press. (In Chinese with English abastract).

    Google Scholar 

  • Qian, Y., and Bengtson, S., 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24, 1–156.

    Google Scholar 

  • Runnegar, B., and Bengtson, S., 1990. Origin of hard parts—early skeletal fossils. In Briggs, D. E. G., and Crowther, P. R. (eds.), Palaeobiology—A Synthesis. Oxford: Blackwell, pp. 17–30.

    Google Scholar 

  • Sepkoski, J. J. (Jr.), 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge: Cambridge University Press, pp. 553–561.

    Google Scholar 

  • Thomas, R. D., Shearman, R. M., and Stewart, G. W., 2000. Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288, 1239–1242.

    Article  Google Scholar 

  • Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D., 2002. Proterozoic Modular Biomineralized Metazoan from the Nama Group, Namibia. Science, 296, 2383–2386.

    Article  Google Scholar 

  • Yochelson, E. L., and Kisselev, G. N., 2003. Early Cambrian Salterella and Volborthella (Phylum Agmata) re-evaluated. Lethaia, 36, 8–20.

    Article  Google Scholar 

  • Zhuravlev, A. Yu., and Wood, R. A., 2008. Eve of biomineralization: Controls on skeletal mineralogy. Geology, 36, 923–926.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Li, G., Zhu, M., Chen, Z. (2011). Animal Skeletons, Advent. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_5

Download citation

Publish with us

Policies and ethics