Skip to main content

Active Stereo Vision

  • Reference work entry
  • First Online:
Computer Vision

Related Concepts

Camera Calibration

Definition

Active stereo vision utilizes multiple cameras for 3D reconstruction, gaze control, measurement, tracking, and surveillance. Active stereo vision is to be contrasted with passive or dynamic stereo vision in that passive systems treat stereo imagery as a series of independent static images while active and dynamic systems employ temporal constraints to integrate stereo measurements over time. Active systems utilize feedback from the image streams to manipulate camera parameters, illuminants, or robotic motion controllers in real time.

Background

Stereo vision uses two or more cameras with overlapping fields of view to estimate 3D scene structure from 2D projections. Binocular stereo vision – the most common implementation – uses exactly two cameras, yet one can utilize more than two at the expense of computational speed within the same algorithmic framework.

The “passive” stereo vision problem can be described as a system of at least two...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vieville T (1997) A few steps towards 3d active vision. Springer, New York/Secaucus

    Book  Google Scholar 

  2. Leung C, Appleton B, Lovell B, Sun C (2004) An energy minimisation approach to stereo-temporal dense reconstruction. In: Proceedings of the 17th international conference on pattern recognition, vol 4, Cambridge, pp 72–75

    Google Scholar 

  3. Min D, Yea S, Vetro A (2010) Temporally consistent stereo matching using coherence function. In: 3DTV-conference: the true vision – capture, transmission and display of 3D video (3DTV-CON), 2010, Tampere, pp 1–4

    Google Scholar 

  4. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1–3):7–42

    Article  MATH  Google Scholar 

  5. Olson CF, Matthies LH, Schoppers M, Maimone MW (2001) Stereo ego-motion improvements for robust rover navigation. In: Proceedings IEEE international conference on robotics and automation, vol 2, Seoul, pp 1099–1104

    Google Scholar 

  6. Davison AJ (1998) Mobile robot navigation using active vision. PhD thesis, University of Oxford

    Google Scholar 

  7. Hogue A, Jenkin M (2006) Development of an underwater vision sensor for 3d reef mapping. In: IEEE/RSJ international conference on intelligent robots and systems, Beijing, pp 5351–5356

    Google Scholar 

  8. Se S, Jasiobedzki P (2005) Instant scene modeler for crime scene reconstruction. In: 2005 IEEE computer society conference on computer vision and pattern recognition workshop on safety and security applications, vol III, San Diego, pp 123–123

    Google Scholar 

  9. Ahuja N, Abbott A (1993) Active stereo: integrating disparity, vergence, focus, aperture and calibration for surface estimation. IEEE Trans Pattern Anal Mach Intell 15(10): 1007–1029

    Article  Google Scholar 

  10. Everett HR (1995) (ECCV) Sensors for mobile robots: theory and application. A. K. Peters, Ltd., Natick

    Google Scholar 

  11. Grosso E, Tistarelli M, Sandini G (1992) Active/dynamic stereo for navigation. In: Second European conference on computer vision, Santa Margherita Ligure, pp 516–525

    Google Scholar 

  12. Maimone MW, Leger PC, Biesiadecki JJ (2007) Overview of the mars exploration rovers autonomous mobility and vision capabilities. In: IEEE international conference on robotics and autonomsou (ICRA) space robotics workshop, Rome

    Google Scholar 

  13. Wallner F, Dillman R (1995) Real-time map refinement by use of sonar and active stereo-vision. Robot Auton Syst 16(1):47–56. Intelligent robotics systems SIRS’94

    Google Scholar 

  14. Murray D, Little JJ (2000) Using real-time stereo vision for mobile robot navigation. Auton Robot 8(2): 161–171

    Article  Google Scholar 

  15. Diebel J, Reutersward K, Thrun S, Davis J, Gupta R (2004) Simultaneous localization and mapping with active stereo vision. In: IEEE/RSJ international conference on intelligent robots and systems, vol 4, Sendai, pp 3436–3443

    Google Scholar 

  16. Jung BS, Choi SB, Ban SW, Lee M (2004) A biologically inspired active stereo vision system using a bottom-up saliency map model. In: Rutkowski L, Siekmann J, Tadeusiewicz R, Zadeh LA (eds) Artificial intelligence and soft computing – ICAISC 2004. Volume 3070 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 730–735

    Google Scholar 

  17. Hartley RI, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications. MIT, Cambridge

    MATH  Google Scholar 

  19. Horaud R, Csurka G (1998) Self-calibration and euclidean reconstruction using motions of a stereo rig. In: Sixth international conference on computer vision, Bombay, pp 96–103

    Google Scholar 

  20. Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice. Volume 1883 of lecture notes in computer science. Springer, New York, pp 298–372

    Google Scholar 

  21. Williamson T, Thorpe C (1999) A trinocular stereo system for highway obstacle detection. In: IEEE international conference on robotics and automation, Detroit, pp 2267–2273

    Google Scholar 

  22. Schleicher D, Bergasa LM, Ocaña M, Barea R, López E (2010) Real-time hierarchical stereo visual slam in large-scale environments. Robot Auton Syst 58:991–1002

    Article  Google Scholar 

  23. Se S, Jasiobedzki P, Wildes R (2007) Stereo-vision based 3d modeling of space structures. In: Proceedings of the SPIE conference on sensors and systems for space applications, vol 6555, Orlando

    Google Scholar 

  24. Rusinkiewicz S, Hall-Holt O, Levoy M (2002) Real-time 3d model acquisition. ACM Trans Graph 21(3):438–446

    Article  Google Scholar 

  25. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept 7(1):1–39

    Article  Google Scholar 

  26. Tsotsos JK (2001) Motion understanding: task-directed attention and representations that link perception with action. Int J Comput Vis 45(3):265–280

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hogue, A., Jenkin, M.R.M. (2014). Active Stereo Vision. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_282

Download citation

Publish with us

Policies and ethics