Skip to main content

Holography and Optical Storage

  • Reference work entry
Springer Handbook of Lasers and Optics

Abstract

The term holography is composed of the Greek words holos (= whole) and graphein (= to record, to write), and thus summarizes the key aspects of its underlying principle: recording the complete wavefront of an object, i.e., its intensity as well as its phase. Interference and diffraction phenomena are employed to record and retrieve the full information, a technique pioneered by Dennis Gabor in 1948. He was honored with the Nobel prize in Physics in 1971, reflecting the general impact of holography on modern physics.

Holography plays an essential role in todayʼs science and industry. Relevant applications making use of its principle have been developed, including three-dimensional (3-D) displays and holographic cameras, interferometers for nondestructive material analysis, archival data storage systems, diffractive optical systems, and embossed display holograms for security features. The success of holography was made possible in particular by the availability of coherent laser-light sources. In the meantime holography has even been performed using microwaves, neutrons, electrons, X-rays, and acoustic waves.

The first part of this chapter is devoted to holography itself. It provides an introduction to the historical development and reviews the principle of wavefront reconstruction. This section also includes an overview of hologram classification, recording/read-out geometries, holographic techniques and recording materials. Special emphasis is given to explaining the principles of some of the most important holographic applications, finishing with a brief insight into a few of the latest discoveries making use of Gaborʼs principle, such as holographic scattering and neutron diffractive optics.

The second part of this chapter addresses trends in optical storage, focussing on holographic data storage. It highlights different approaches to achieving increased optical storage density. This section also discusses the historical development of optical storage, the need for increased storage densities (and hence storage capacities) and the role of optical storage systems in todayʼs life.

Various approaches to increasing the areal density of optical storage systems are introduced. Next, the advantages of and approaches to volume optical recording that are currently under consideration for future generations of optical storage systems are presented. The state of the art as well as physical and technical attempts to realize holographic data storage are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CCD:

charge-coupled device

CGH:

computer generated hologram

CW:

continuous wave

DARPA:

United States Defense Advanced Research Projects Agency

FIFO:

first-in first-out

HDSS:

holographic data storage system

MFD:

multilayer fluorescent disk

MSR:

magnetic super-resolution

NA:

numerical aperture

NSIC:

National Storage Industry Consortium

PDLC:

polymer-dispersed liquid crystal

PMMA:

polymethylmethacrylate

PQ:

phenanthraquinone

R/W:

rewritable

SIL:

solid-immersion lens

SLM:

spatial light modulator

SNR:

signal-to-noise ratio

TV:

television

WORM:

write-once, read-many times

References

  1. D. Gabor: A new microscopic principle, Nature 161, 777 (1948)

    ADS  Google Scholar 

  2. E. N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory, J. Opt. Soc. Am. 52, 1123 (1962)

    ADS  Google Scholar 

  3. Y. N. Denisyuk: On the reproduction of the optical properties of an object by the wave field of its scattered radiation, Opt. Spectrosc. (USSR) 15, 279 (1963)

    Google Scholar 

  4. N. L. Hartmann: Wavefront reconstruction with incoherent light, US Patent 3532406 (1965)

    Google Scholar 

  5. R. L. Powell, J. H. Hemmye: Holography and hologram interferometry using photochromic recording materials, J. Opt. Soc. Am. 56, 1540 (1966)

    Google Scholar 

  6. T. A. Shankoff: Phase holograms in dichromated gelatin, Appl. Opt. 7, 2101 (1968)

    ADS  Google Scholar 

  7. http://www.holophile.com

  8. L. Siebert: Front-lighted pulse laser holography, Appl. Phys. Lett. 11, 326 (1967)

    ADS  Google Scholar 

  9. S. Benton: Hologram reconstructions with extended incoherent sources, J. Opt. Soc. Am. 59, 1545 (1969)

    Google Scholar 

  10. W. Odelberg (ed.): From Les Prix Nobel en 1971 (Nobel Foundation, Stockholm 1972)

    Google Scholar 

  11. V. G. Komar, V. I. Mandrosov, G. Sobolev, D. A. Tsyrulnikov: Image projection onto a holographic screen, Kvantovaya Elektron. 2, 193 (1975)

    Google Scholar 

  12. E. N. Leith, J. Upatnieks: Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am. 53, 1377 (1963)

    ADS  Google Scholar 

  13. E. N. Leith, J. Upatnieks: Wavefront reconstruction with diffused illumination and three-dimensional objects, J. Opt. Soc. Am. 54, 1295 (1964)

    ADS  Google Scholar 

  14. Nobel Foundation: Nobel Lectures: Physics 1901-1921 (Elsevier, Amsterdam 1967)

    Google Scholar 

  15. S. F. Johnston: Reconstructing the history of holography, SPIE Proc. 5005, 455 (2003)

    Google Scholar 

  16. P. Hariharan: Optical holography, 2 edn. (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  17. G. Groh: Holographie (Berliner Union, Stuttgart 1973)

    Google Scholar 

  18. T. K. Gaylord, M. G. Moharam: Thin and thick gratings: Terminology clarification, Appl. Opt. 20, 3271 (1981)

    ADS  Google Scholar 

  19. P. Yeh: Introduction to Photorefractive Nonlinear Optics (Wiley, New York 1993)

    Google Scholar 

  20. F. Laeri, T. Tschudi, J. Albers: Coherent CW image amplifier and oscillator using two-wave interaction in a BaTiO3-crystal, Opt. Commun. 47, 387 (1983)

    ADS  Google Scholar 

  21. M. Kaczmarek, R. W. Eason: Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3, Opt. Lett. 20, 1850 (1995)

    ADS  Google Scholar 

  22. S. A. Benton: White light transmission/reflection holographic imaging. In: Applications of Holography and Optical Data Processing, ed. by E. Marom, A. A. Friesem, E. Wiener-Avnaer (Pergamon, Oxford 1977) p. 401

    Google Scholar 

  23. S. D. Kakichashvili: Method of recording phase polarization holograms, Kvantovaya Elektron 1, 1435 (1974)

    Google Scholar 

  24. T. Todorov, L. Nikolova, N. Tomova: Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence, Appl. Opt. 23, 4309 (1984)

    ADS  Google Scholar 

  25. S. G. Odulov: Spatially oscillating photo-voltaic current in iron-doped lithium-niobate crystals, Sov. Phys. JETP Lett. 35, 10 (1982)

    ADS  Google Scholar 

  26. M. Imlau, T. Woike, R. Schieder, R. A. Rupp: Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO] ⋅ 2H2O, Europhys. Lett. 53, 471 (2001)

    ADS  Google Scholar 

  27. J. T. McCrickerd, N. George: Holographic stereogram from sequential component photographs, Appl. Phys. Lett. 12, 10 (1968)

    ADS  Google Scholar 

  28. D. J. DeBitetto: Holographic panoramic stereograms synthesized from white light recordings, Appl. Opt. 8, 1740 (1969)

    ADS  Google Scholar 

  29. J. D. Redman, W. P. Wolton, E. Shuttleworth: Use of holography to make truly 3-dimensional X-ray images, Nature 220, 58 (1968)

    ADS  Google Scholar 

  30. N. D. Haig: 3-dimensional holograms by rotational multiplexing of 2-dimensional films, Appl. Opt. 12, 419 (1973)

    ADS  Google Scholar 

  31. M. C. King: Multiple exposure hologram recording of a 3-d image with a 360 degree view, Appl. Opt. 7, 1641 (1968)

    ADS  Google Scholar 

  32. M. Born, E. Wolf: Principles of Optics, 7 edn. (Cambridge Univ. Press, Cambridge 2002)

    Google Scholar 

  33. B. J. Thompson: Fraunhofer diffraction patterns of opaque objects with coherent background, J. Opt. Soc. Am. 53, 1350 (1963)

    Google Scholar 

  34. A. Vanderlugt: Signal-detection by complex spatial-filtering, IEEE T. Inform. Theory 10, 139 (1964)

    Google Scholar 

  35. J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, San Francisco 1968)

    Google Scholar 

  36. L. Rosen: Focused-image holography with extended sources, Appl. Phys. Lett. 9, 337 (1966)

    ADS  Google Scholar 

  37. G. W. Stroke: White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and in-line background, Phys. Lett. 23, 325 (1966)

    ADS  Google Scholar 

  38. G. B. Brandt: Image plane holography, Appl. Opt. 8, 1421 (1969)

    ADS  Google Scholar 

  39. H. Kogelnik: Coupled wave theory for thick hologram gratings, AT&T Tech. J. 48, 2909–2947 (1969)

    Google Scholar 

  40. R. Hioki, T. Suzuki: Reconstruction of wavefronts in all directions, Jpn. J. Appl. Phys. 4, 816 (1965)

    ADS  Google Scholar 

  41. T. H. Jeong, P. Rudolf, A. Luckett: 360° holography, J. Opt. Soc. Am. 56, 1263 (1966)

    Google Scholar 

  42. L. H. Lin: Edge-illuminated hologram, J. Opt. Soc. Am. 60, 714 (1970)

    Google Scholar 

  43. R. J. Collier, C. B. Burckhardt, L. H. Lin: Optical Holography (Academic, Orlando 1971)

    Google Scholar 

  44. D. L. Staebler, J. J. Amodei, W. Phillips: Multiple storage of thick holograms in LiNbO3, IEEE J. Quantum Elect. 8, 611 (1972)

    ADS  Google Scholar 

  45. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey: Holographic data storage in three-dimensional media, Appl. Opt. 5, 1303 (1966)

    ADS  Google Scholar 

  46. G. A. Rakuljic, V. Leyva, A. Yariv: Optical data storage using orthogonal wavelength multiplexed volume holograms, Opt. Lett. 17, 1471 (1992)

    ADS  Google Scholar 

  47. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu: Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using visible-light tunable diode laser, Opt. Commun. 101, 317 (1993)

    ADS  Google Scholar 

  48. C. Denz, G. Pauliat, G. Roosen, T. Tschudi: Volume hologram multiplexing using a deterministic phase encoding method, Opt. Commun. 85, 171 (1991)

    ADS  Google Scholar 

  49. G. Barbastathis, M. Levene, D. Psaltis: Shift multiplexing with spherical reference waves, Appl. Opt. 35, 2403 (1996)

    ADS  Google Scholar 

  50. Y. N. Denisyuk: Photographic reconstruction of the optical properties of an object in its own scattered radiation field, Sov. Phys. Doklady 7, 543 (1962)

    ADS  Google Scholar 

  51. P. J. Van Heerden: Theory of optical information storage in solids, Appl. Opt. 2, 393 (1963)

    ADS  Google Scholar 

  52. L. H. Lin: Hologram formation in hardened dichromated gelatin films, Appl. Opt. 8, 963 (1969)

    ADS  Google Scholar 

  53. A. A. Friesem: Holograms in thick emulsions, Appl. Phys. Lett. 7, 102 (1965)

    ADS  Google Scholar 

  54. G. W. Stroke, A. E. Labeyrie: White-light reconstruction of holographic images using Lippmann-Bragg diffraction effect, Phys. Lett. 20, 368 (1966)

    ADS  Google Scholar 

  55. K. S. Pennington, L. H. Lin: Multicolor wavefront reconstruction, Appl. Phys. Lett. 7, 56 (1965)

    ADS  Google Scholar 

  56. A. A. Friesem, R. J. Fedorowicz: Recent advances in multicolor wavefront reconstruction, Appl. Opt. 5, 1085 (1966)

    ADS  Google Scholar 

  57. G. Barbastathis, D. Psaltis: Volume Holographic Multiplexing Methods, Springer Ser. Opt. Sci., Vol. 76 (Springer, Berlin, Heidelberg 2000) pp. 21–62

    Google Scholar 

  58. H.-Y. S. Li, D. Psaltis: Three-dimensional holographic disks, Appl. Opt. 33, 3764 (1994)

    ADS  Google Scholar 

  59. D. Psaltis: Parallel optical memories, Byte 17, 179 (1992)

    Google Scholar 

  60. H. Lee, X.-G. Gu, D. Psaltis: Volume holographic interconnections with maximal capacity and minimal cross talk, J. Appl. Phys. 65, 2191 (1989)

    ADS  Google Scholar 

  61. F. H. Mok, G. W. Burr, D. Psaltis: Angle and space multiplexed holographic random access memory (HRAM), Opt. Memory Neural Networks 3, 119 (1994)

    Google Scholar 

  62. G. Burr, F. Mok, D. Psaltis: Angle and space multiplexed holographic storage using the 90-degrees geometry, Opt. Commun. 117, 49 (1995)

    ADS  Google Scholar 

  63. K. Curtis, A. Pu, D. Psaltis: Method for holographic storage using peristrophic multiplexing, Opt. Lett. 19, 993 (1994)

    ADS  Google Scholar 

  64. G. Barbastathis, A. Pu, M. Levene, D. Psaltis: Holographic 3D Disks Using Shift Multiplexing, SPIE Proc. 2514, 355 (1995)

    ADS  Google Scholar 

  65. F. H. Mok, M. C. Tackitt, H. M. Stoll: Storage of 500 high-resolution holograms in a LiNbO3 crystal, Opt. Lett. 16, 605 (1991)

    ADS  Google Scholar 

  66. A. Pu, K. Curtis, D. Psaltis: A new method for holographic data storage in polymer films. In: Nonlinear Optics: Materials, Fundamentals and Applications Meeting (IEEE, New York 1994) p. 433

    Google Scholar 

  67. S. Campbell, X. Yi, P. Yeh: Hybrid sparse-wavelength angle-multiplexed optical data storage system, Opt. Lett. 19, 2161 (1994)

    ADS  Google Scholar 

  68. D. Psaltis, F. Mok: Holographic memories, Sci. Am. 273, 70 (1995)

    ADS  Google Scholar 

  69. A. Pu, D. Psaltis: High-density recording in photopolymer-based holographic three-dimensional disks, Appl. Opt. 35, 2389 (1996)

    ADS  Google Scholar 

  70. A. Pu, D. Psaltis: Holographic 3D disks using shift multiplexing, CLEO96, Vol. 9 (OSA, Washington 1996) p. 165

    Google Scholar 

  71. A. Pu, D. Psaltis: Holographic data storage with 100 bits/μ m2 density. Optical Data Storage Topical Meeting (IEEE, New York 1997) p. 48

    Google Scholar 

  72. S. Matthews: A light touch, Laser Focus World 40, 137 (2004)

    Google Scholar 

  73. U. Schnars, W. Jüptner: Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Opt. 33, 179 (1994)

    ADS  Google Scholar 

  74. I. Yamaguchi, T. Zhang: Phase-shifting digital holography, Opt. Lett. 22, 1268 (1997)

    ADS  Google Scholar 

  75. H. M. Smith: Holographic recording Materials, Top. Appl. Phys., Vol. 20 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  76. P. Hariharan: Holographic recording materials – recent developments, Opt. Eng. 19, 636 (1980)

    Google Scholar 

  77. R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin: Diffraction from optically written persistent plasma gratings in doped compound semiconductors, Appl. Phys. Lett. 65, 16 (1994)

    ADS  Google Scholar 

  78. A. I. Ryskin, A. S. Shcheulin, B. Koziarska, J. M. Langer, A. Suchocki, I. I. Buczinskaya, P. P. Fedorov, B. P. Sobolev: CdF2:In: A novel material for optically written storage of information, Appl. Phys. Lett. 67, 31 (1995)

    ADS  Google Scholar 

  79. B. Sugg, H. Nürge, B. Faust, R. Niehüser, H.-J. Reyher, R. A. Rupp, L. Ackermann: The photorefractive effect in terbium gallium garnet, Opt. Mater. 4, 343 (1995)

    Google Scholar 

  80. T. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, R. Schieder: Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO] ⋅ 2H2O, Appl. Phys. B 63, 243–248 (1996)

    ADS  Google Scholar 

  81. M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, K. Schwarz: Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO] ⋅ 2H2O, A new photorefractive effect, Appl. Phys. B 68, 877 (1999)

    ADS  Google Scholar 

  82. M. A. Ellabban, M. Fally, R. A. Rupp, L. Kovács: Light-induced phase and amplitude gratings in centrosymmetric Gadolinium Gallium garnet doped with Calcium, Opt. Express 14, 593 (2006)

    ADS  Google Scholar 

  83. C. C. Bowley, G. P. Crawford: Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials, Appl. Phys. Lett. 76, 2235 (2000)

    ADS  Google Scholar 

  84. M. J. Escuti, J. Qi, G. P. Crawford: Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals, Opt. Lett. 28, 522 (2003)

    ADS  Google Scholar 

  85. G. P. Crawford: Electrically switchable Bragg gratings, Opt. Photon. News 14, 54 (2003)

    ADS  Google Scholar 

  86. E. Völkl, H. Lichte: Electron holograms for subangstrom point resolution, Ultramicrosc. 32, 177 (1990)

    Google Scholar 

  87. B. Javidi, E. Tajahuerce: Three-dimensional object recognition by use of digital holography, Opt. Lett. 25, 610 (2000)

    ADS  Google Scholar 

  88. W. D. Rau, P. Schwander, F. H. Baumann, W. Höppner, A. Ourmazd: Two-dimensional mapping of the electrostatic potential in transistors by electron holography, Phys. Rev. Lett. 82, 2614 (1999)

    ADS  Google Scholar 

  89. M. R. McCartney, M. A. Gribelyuk, J. Li, P. Ronsheim, J. S. McMurray, D. J. Smith: Quantitative analysis of one-dimensional dopant profile by electron holography, Appl. Phys. Lett. 80, 3213 (2002)

    ADS  Google Scholar 

  90. E. Völkl, L. F. Allard, D. Joy: Introduction to Electron Holography (Kluwer Academic, Dordrecht 1999)

    Google Scholar 

  91. A. Tonomura: Electron Holography, Springer Ser. Opt. Sci., Vol. 70, 2 edn. (Springer, Berlin, Heidelberg 1999)

    MATH  Google Scholar 

  92. R. A. London, M. D. Rosen, J. E. Trebes: Wavelength choice for soft X-ray laser holography of biological samples, Appl. Opt. 28, 3397 (1989)

    ADS  Google Scholar 

  93. M. Howells, C. Jacobsen, J. Kirz: X-ray holograms at improved resolution: a study of zymogen granules, Science 238, 514 (1987)

    ADS  Google Scholar 

  94. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan: Demonstration of X-ray holography with an X-ray laser, Science 238, 517 (1987)

    ADS  Google Scholar 

  95. E. N. Leith: Quasi-holographic techniques in the microwave region, Proc. IEEE 59, 1305 (1971)

    Google Scholar 

  96. A. Andreoni, M. Bondani, M. A. C. Potenza, Y. N. Denisyuk: Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields, J. Opt. Soc. Am. B 17, 966 (2000)

    ADS  Google Scholar 

  97. Y. N. Denisyuk, A. Andreoni, M. Bondani, M. A. C. Potenza: Real-time holograms generated by second-harmonic cross correlation of object and reference optical wave fields, Opt. Lett. 25, 890 (2000)

    ADS  Google Scholar 

  98. M. Bondani, A. Andreoni: Holographic nature of three-wave mixing, Phys. Rev. A 66, 33805 (2002)

    ADS  Google Scholar 

  99. M. Bondani, A. Allevi, A. Brega, E. Puddu, A. Andreoni: Difference-frequency-generated holograms of two-dimensional objects, J. Opt. Soc. Am. B 21, 280 (2004)

    ADS  Google Scholar 

  100. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield: Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000)

    ADS  Google Scholar 

  101. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener: Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations, Appl. Phys. Lett. 82, 1284 (2003)

    ADS  Google Scholar 

  102. N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen: Laser mode manipulation by intracavity dynamic holography: application to mode selection, Appl. Phys. B 69, 155 (1999)

    ADS  Google Scholar 

  103. S. Y. Lam, M. Damzen: Self-adaptive holographic solid-state dye laser, Opt. Commun. 218, 365 (2003)

    ADS  Google Scholar 

  104. L. DʼAuria, J. P. Huignard, E. Spitz: Holographic read-write memory and capacity enhancement by 3D storage, IEEE Trans. Magn. 9, 83 (1973)

    ADS  Google Scholar 

  105. J. Heanue, M. Bashaw, L. Hesselink: Volume holographic storage and retrieval of digital data, Science 265, 749 (1994)

    ADS  Google Scholar 

  106. M. P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann: A precision tester for studies of holographic optical storage materials and recording physics, Appl. Opt. 35, 2360 (1996)

    ADS  Google Scholar 

  107. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong: Compact holographic storage demonstrator with rapid access, Appl. Opt. 35, 2375 (1996)

    ADS  Google Scholar 

  108. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus: Modulation coding for pixel-matched holographic data storage, Opt. Lett. 22, 639 (1997)

    ADS  Google Scholar 

  109. M. Imlau, T. Bieringer, S. G. Odoulov, T. Woike: Holographic data storage. In: Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, ed. by R. Waser (Wiley-VCH, Weinheim 2003) Chap. 27, pp. 661–686

    Google Scholar 

  110. H. J. Coufal, D. Psaltis, G. T. Sincerbox (eds.): Holographic Data Storage, Springer Ser. Opt. Sci., Vol. 76 (Springer, Berlin, Heidelberg 2000)

    MATH  Google Scholar 

  111. F. Dreesen, G. von Bally: High resolution color-holography for archaeological and medical applications,optics within life sciences. In: Optics within Life Science, ed. by C. Fotakis, T. G. Papazoglou, C. Kapouzos (Springer, Berlin, Heidelberg 2000) p. 349

    Google Scholar 

  112. F. Dreesen, G. von Bally: Color rendering in reflection holography. In: Optical Technologies in the Humanities, Ser. Opt. Within Life Sci., Vol. 4, ed. by D. Dirksen, G. von Bally (Elsevier, Amsterdam 1996) p. 79

    Google Scholar 

  113. G. von Bally, F. Dreesen, V. B. Markov, A. Roskhop, E. V. de Haller: Recording of color holograms on PFG-03Ts, Tech. Phys. Lett. 21, 76 (1995)

    Google Scholar 

  114. G. von Bally, D. Dreesen, A. Roshop, E. de Haller, G. Wernicke, N. Demoli, U. Dahms, H. Gruber, W. Sommerfeld: Holographic methods in cultural heritage preservation and evaluation. In: Optical Methods in Biomedical and Environmental Sciences, Ser. Opt. Within Life Sci., Vol. 3, ed. by H. Ohzu, S. Komatsu (Elsevier, Amsterdam 1994) p. 297

    Google Scholar 

  115. Y. I. Ostrovsky, M. Butusov, G. V. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., Vol. 20 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  116. C. M. Vest: Holographic Interferometry (Wiley Interscience, New York 1979)

    Google Scholar 

  117. G. Wernicke, W. Osten: Holografische Interferometrie (Physik-Verlag, Weinheim 1982)

    Google Scholar 

  118. T. Kreis: Holographic interferometry, Akad. Ser. Opt. Metrol., Vol. 1 (Akademie, Berlin 1996)

    Google Scholar 

  119. K. A. Stetson, R. L. Powell: Interferometric hologram evaluation and real-time vibration analysis of diffuse objects, J. Opt. Soc. Am. 55, 1694 (1965)

    Google Scholar 

  120. R. J. Collier, E. T. Doherty, K. S. Pennington: Application of Moiré techniques to holography, Appl. Phys. Lett. 7, 223 (1965)

    ADS  Google Scholar 

  121. R. E. Brooks, L. O. Heflinger, R. F. Wuerker: Interferometry with a holographically reconstructed comparsion beam, Appl. Phys. Lett. 7, 248 (1965)

    ADS  Google Scholar 

  122. M. H. Horman: An application of wavefront reconstruction to interferometry, Appl. Opt. 4, 333 (1965)

    ADS  Google Scholar 

  123. B. P. Hildebrand, K. A. Haines: Interferometric measurements using the wavefront reconstruction technique, Appl. Opt. 5, 172 (1966)

    ADS  Google Scholar 

  124. K. A. Haines, B. P. Hildebrand: Surface-deformation measurement using the wavefront reconstruction technique, Appl. Opt. 5, 595 (1966)

    ADS  Google Scholar 

  125. L. O. Heflinger, R. F. Wuerker, R. E. Brooks: Holographic interferometry, J. Appl. Phys. 37, 642 (1966)

    ADS  Google Scholar 

  126. N. Abramson: The holo-diagram: A practical device for making and evaluating holograms, Appl. Opt. 8, 1235 (1969)

    ADS  Google Scholar 

  127. J. E. Sollid: Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces, Appl. Opt. 8, 1587 (1969)

    ADS  Google Scholar 

  128. K. A. Stetson: Method of vibration measurements in heterodyne interferometry, Opt. Lett. 7, 233 (1982)

    ADS  Google Scholar 

  129. R. J. Pryputniewicz: Pulsed laser holography in studied of bone motions and deformations, Opt. Eng. 24, 832 (1985)

    Google Scholar 

  130. R. Thalmann: Heterodyne and quasi-heterodyne holographic-interferometry, Opt. Eng. 24, 824 (1985)

    Google Scholar 

  131. T. Tsuruta, N. Shiotake, Y. Itoh: Hologram interferometry using 2 reference beams, Jpn. J. Appl. Phys. 7, 1092 (1968)

    ADS  Google Scholar 

  132. G. S. Ballard: Double-exposure holographic interferometry, J. Appl. Phys. 39, 4846 (1968)

    ADS  Google Scholar 

  133. E. Marom, F. M. Mottier: 2-reference-beam holographic interferometry, J. Opt. Soc. Am. 66, 23 (1976)

    ADS  Google Scholar 

  134. G. M. Brown, R. M. Grant, G. W. Stroke: Theory of holographic interferometry, J. Acoust. Soc. Am. 45, 1166 (1969)

    ADS  Google Scholar 

  135. E. Jansson, N. E. Molin, H. Sundin: Resonances of a violin body studied by hologram interferometry and acoustical methods, Phys. Scr. 2, 243 (1970)

    ADS  Google Scholar 

  136. A. D. Wilson, D. H. Strope: Time-average holographic interferometry of a circular plate vibrating simultaneously in 2 rationally related modes, J. Opt. Soc. Am. 60, 1162 (1970)

    ADS  Google Scholar 

  137. R. Tonin, D. A. Bies: Time-averaged holography for study of 3-dimensional vibrations, J. Sound Vibrat. 52, 315 (1977)

    ADS  Google Scholar 

  138. C. C. Aleksoff: Time average holography extended, Appl. Phys. Lett. 14, 23 (1969)

    ADS  Google Scholar 

  139. F. M. Mottier: Time-averaged holography with triangular phase modulation of the reference wave, Appl. Phys. Lett. 15, 285 (1969)

    ADS  Google Scholar 

  140. E. Archbold, A. E. Ennos: Observation of surface vibration modes by stroboscopic hologram interferometry, Nature 217, 942 (1968)

    ADS  Google Scholar 

  141. B. M. Watrasiewicz, P. Spicer: Vibration analysis by stroboscopic holography, Nature 217, 1142 (1968)

    ADS  Google Scholar 

  142. P. Shajenko, C. D. Johnson: Stroboscopic holographic interferometry, Appl. Phys. Lett. 13, 44 (1968)

    ADS  Google Scholar 

  143. D. Hadbawnik: Holographische Endoskopie, Optik 45, 21 (1976)

    Google Scholar 

  144. M. Yonemura, T. Nishisaka, H. Machida: Endoscopic hologram interferometry using fiber optics, Appl. Opt. 20, 1664 (1981)

    ADS  Google Scholar 

  145. G. von Bally, W. Schmidthaus, H. Sakowski, W. Mette: Gradient-index optical systems in holographic endoscopy, Appl. Opt. 23, 1725 (1984)

    ADS  Google Scholar 

  146. G. von Bally, E. Brune, W. Mette: Holographic endoscopy with gradient-index optical imaging system and optical fibers, Appl. Opt. 25, 3425 (1986)

    ADS  Google Scholar 

  147. O. Coquoz, R. Conde, F. Taleblou, C. Depeursinge: Performances of endoscopic holography with a multicore optical fiber, Appl. Opt. 34, 7186 (1995)

    ADS  Google Scholar 

  148. D. B. Sheffer, W. Loughry, K. Somasundaram, S. K. Chawla, P. J. Wesolowski: Phase-shifting holographic interferometry for breast cancer detection, Appl. Opt. 33, 5011 (1994)

    ADS  Google Scholar 

  149. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal: Comparative study of various endoscopes for pulsed digital holographic interferometry, Appl. Opt. 40, 2692 (2001)

    ADS  Google Scholar 

  150. M. d. S. Hernández-Montes, C. Pérez-López, F. Mendoza Santoyo, L. M. Muñoz Guevara: Detection of biological tissue in gels using pulsed digital holography, Opt. Express 12, 853 (2004)

    ADS  Google Scholar 

  151. H. Chen, M. Shih, E. Arons, E. Leith, J. Lopez, D. Dilworth, P. C. Sun: Electronic holographic imaging through living human tissue, Appl. Opt. 33, 3630 (1994)

    ADS  Google Scholar 

  152. N. H. Abramson, K. G. Spears: Single pulse light-in-flight recording by holography, Appl. Opt. 28, 1834 (1989)

    ADS  Google Scholar 

  153. I. Bukosza: Three-dimensional representation of ventriculography using contour-line holography, Appl. Opt. 31, 2485 (1992)

    ADS  Google Scholar 

  154. C. Liu, C. Yan, S. Gao: Digital holographic method for tomography-image reconstruction, Appl. Phys. Lett. 84, 1010 (2004)

    ADS  Google Scholar 

  155. M.-K. Kim: Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography, Opt. Express 7, 305 (2000)

    ADS  Google Scholar 

  156. S.-R. Kothapalli, P. Wu, C. S. Yelleswarapu, D. V. G. L. N. Rao: Medical image processing using transient Fourier holography in bacteriorhodopsin films, Appl. Phys. Lett. 85, 5836 (2004)

    ADS  Google Scholar 

  157. D. Carl, B. Kemper, G. Wernicke, G. von Bally: Parameter-optimized digital holographic microscope for high-resolution living-cell analysis, Appl. Opt. 43, 6536 (2004)

    ADS  Google Scholar 

  158. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge: Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Opt. Lett. 30, 468 (2005)

    ADS  Google Scholar 

  159. A. Kozma, D. L. Kelly: Spatial filtering for detection of signals submerged in noise, Appl. Opt. 4, 387 (1965)

    ADS  Google Scholar 

  160. A. W. Lohmann, D. P. Paris: Binary Fraunhofer holograms, generated by computer, Appl. Opt. 6, 1739 (1967)

    ADS  Google Scholar 

  161. W. H. Lee: Sampled Fourier transform hologram generated by computer, Appl. Opt. 9, 639 (1970)

    ADS  Google Scholar 

  162. W.-H. Lee: Binary synthetic holograms, Appl. Opt. 13, 1677 (1974)

    ADS  Google Scholar 

  163. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, D. McGloin: Optical trapping of three-dimensional structures using dynamic holograms, Opt. Express 11, 3562 (2003)

    ADS  Google Scholar 

  164. W. J. Hossack, E. Theofanidou, J. Crain: High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay, Opt. Express 11, 2053 (2003)

    ADS  Google Scholar 

  165. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier: Computer-generated holographic optical tweezer arrays, Rev. Sci. Instrum. 72, 1810 (2001)

    ADS  Google Scholar 

  166. D. G. Grier, A. A. Sawchuk: Dynamic holographic optical tweezers: transforming mesoscopic matter with light, Trends Opt. Photon. (OSA) 90, 84 (2003)

    Google Scholar 

  167. A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte: Diffractive optical tweezers in the Fresnel regime, Opt. Express 12, 2243 (2004)

    ADS  Google Scholar 

  168. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986)

    ADS  Google Scholar 

  169. A. Vasara, J. Turunen, A. T. Friberg: Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748 (1989)

    ADS  Google Scholar 

  170. J. Durnin: Exact solutions for nondiffracting beams. I. the scalar theory, J. Opt. Soc. Am. A 4, 651 (1987)

    ADS  Google Scholar 

  171. N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White: Generation of optical phase singularities by computer-generated holograms, Opt. Lett. 17, 221 (1992)

    ADS  Google Scholar 

  172. A. R. Agachev, N. P. Larionov, A. V. Lukin, T. A. Mironova, A. A. Nyushkin, D. V. Protasevich, R. A. Rafikov: Computer-generated holographic optics, J. Opt. Technol. 69, 871 (2002)

    Google Scholar 

  173. I. M. Lancaster: Holograms and authentication: meeting future demands. In: Practical Holography XVIII, Mater. Appl., Vol. 5290, ed. by T. H. Jeong, H. I. Bjelkhagen (SPIE, Bellingham 2003) p. 318

    Google Scholar 

  174. D. Weber, J. Trolinger: Novel implementation of nonlinear joint transform correlators in optical security and validation, Opt. Eng. 38, 62 (1999)

    ADS  Google Scholar 

  175. P. Réfrégier, B. Javidi: Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett. 20, 767 (1995)

    ADS  Google Scholar 

  176. B. Javidi, T. Nomura: Securing information by use of digital holography, Opt. Lett. 25, 28 (2000)

    ADS  Google Scholar 

  177. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi: Optoelectronic information encryption with phase-shifting interferometry, Appl. Opt. 39, 2313 (2000)

    ADS  Google Scholar 

  178. J. F. Heanue, M. C. Bashaw, L. Hesselink: Encrypted holographic data storage based on orthogonal-phase-code multiplexing, Appl. Opt. 34, 6012 (1995)

    ADS  Google Scholar 

  179. N. Yoshikawa, M. Itoh, T. Yatagai: Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography, Opt. Lett. 23, 1483 (1998)

    ADS  Google Scholar 

  180. O. Matoba, B. Javidi: Encrypted optical storage with angular multiplexing, Appl. Opt. 38, 7288 (1999)

    ADS  Google Scholar 

  181. S. Kishk, B. Javidi: Watermarking of three-dimensional objects by digital holography, Opt. Lett. 28, 167 (2003)

    ADS  Google Scholar 

  182. M. A. Ellabban, M. Fally, R. A. Rupp, T. Woike, M. Imlau: Holographic Scattering and its Applications. In: Recent Developments in Applied Physics, Vol. 4, ed. by S. G. Pandalay (Transworld Publishing, Trivandrum 2001) pp. 241–275

    Google Scholar 

  183. M. Imlau, M. Goulkov, M. Fally, T. Woike: Characterization of polar oxides by photo-induced light scattering. In: Polar Oxides: Properties, Characterization and Imaging, ed. by U. Böttger, S. Tiedke, R. Waser (Wiley, New York 2005) Chap. 9, pp. 163–188

    Google Scholar 

  184. M. Goulkov, M. Imlau, R. Pankrath, T. Granzow, U. Dörfler, T. Woike: Temperature study of photoinduced wide-angle scattering in cerium-doped strontium barium niobate, J. Opt. Soc. Am. B 20, 307–313 (2003)

    ADS  Google Scholar 

  185. M. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, R. Pankrath, W. Kleemann: Temperature dependent determination of the linear electrooptic coefficient r 33 in Sr0.61Ba0.39Nb2O6 single crystals by means of light-induced scattering, Opt. Commun. 218, 173–182 (2003)

    ADS  Google Scholar 

  186. M. Y. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, R. Pankrath: Study of beam-fanning hysteresis in photo- refractive SBN:Ce: light-induced and primary scattering as functions of polar structure, Appl. Phys. B 76, 407–416 (2003)

    ADS  Google Scholar 

  187. M. Goulkov, M. Imlau, T. Granzow, T. Woike: Beam fanning reversal in the ferroelectric relaxor Sr0.61Ba0.39Nb2O6 at high external electric fields, J. Appl. Phys. 94, 4763 (2003)

    ADS  Google Scholar 

  188. S. Hausfeld, M. Imlau, T. Weisemöller, M. Fally, T. Woike: Parametric scattering upon light-induced generation of metastable molecular states. In: Trends in Optics and Photonics, Vol. 99, ed. by G. Zhang, D. Kip, D. Nolte, J. Xu (OSA, Washington 2005) p. 405

    Google Scholar 

  189. M. Imlau, R. Schieder, R. A. Rupp, T. Woike: Anisotropic holographic scattering in centrosymmetric sodium nitroprusside, Appl. Phys. Lett. 75, 16 (1999)

    ADS  Google Scholar 

  190. M. Goulkov, S. Odoulov, T. Woike, J. Imbrock, M. Imlau, H. Hesse: Holographic light scattering in photorefractive crystals with local response, Phys. Rev. B 65, 195111 (2002)

    ADS  Google Scholar 

  191. A. Szöke: X-ray and electron holography using a local reference beam. In: Short Wavelength coherent radiation: Generation and Applications, Vol. 147, ed. by D. T. Attwood, J. Boker (AIP, New York 1986) pp. 361–367

    Google Scholar 

  192. G. R. Harp, D. K. Saldin, B. P. Tonner: Atomic-resolution electron holography in solids with localized sources, Phys. Rev. Lett. 65, 1012 (1990)

    ADS  Google Scholar 

  193. G. Faigel, M. Tegze: X-ray holography, Rep. Prog. Phys. 62, 355 (1999)

    ADS  Google Scholar 

  194. L. Cser, G. Krexner, G. Török: Atomic-resolution neutron holography, Europhys. Lett. 54, 747 (2001)

    ADS  Google Scholar 

  195. T. Gog, P. M. Len, G. Materlik, D. Bahr, C. S. Fadley, C. Sanchez-Hanke: Multiple-energy X-ray holography: Atomic images of hematite (Fe2O3), Phys. Rev. Lett. 76, 3132 (1996)

    ADS  Google Scholar 

  196. S. Y. Tong, H. Huang, X. Q. Guo: Low-energy electron and low-energy positron holography, Phys. Rev. Lett. 69, 3654 (1992)

    ADS  Google Scholar 

  197. A. Hamza, P. Asoka-Kumar, W. Stoeffl, R. Howell, D. Miller, A. Denison: Development of positron diffraction and holography at LLNL, Radiat. Phys. Chem. 68, 635 (2003)

    ADS  Google Scholar 

  198. J. J. Barton: Photoelectron holography, Phys. Rev. Lett. 61, 1356 (1988)

    ADS  Google Scholar 

  199. P. M. Len, J. D. Denlinger, E. Rotenberg, S. D. Kevan, B. P. Tonner, Y. Chen, M. A. van Hove, C. S. Fadely: Holographic atomic images from surface and bulk W(110) photoelectron diffraction data, Phys. Rev. B 59, 5857 (1999)

    ADS  Google Scholar 

  200. S. Omori, Y. Nihei, E. Rotenberg, J. D. Denlinger, S. Marchesini, S. D. Kevan, B. P. Tonner, M. A. van Hove, C. S. Fadley: Differential photoelectron holography: A new approach for three-dimensional atomic imaging, Phys. Rev. Lett. 88, 055504 (2002)

    ADS  Google Scholar 

  201. D. K. Saldin, P. L. de Andres: Holographic LEED, Phys. Rev. Lett. 64, 1270 (1990)

    ADS  Google Scholar 

  202. H. Wu, S. Xu, S. Ma, W. P. Lau, M. H. Xie, S. Y. Tong: Surface atomic arrangement visualization via reference-atom-specific holography, Phys. Rev. Lett. 89, 216101 (2002)

    ADS  Google Scholar 

  203. H. Li, B. P. Tonner: Real-space interpretation of X-ray-excited Auger-electron diffraction from Cu(001), Phys. Rev. B 37, 3959 (1988)

    ADS  Google Scholar 

  204. M. Tegze, G. Faigel: X-ray holography with atomic resolution, Nature 380, 49 (1996)

    ADS  Google Scholar 

  205. G. Tegze, M. Faigel, S. Marchesini, M. Belakhovsky, A. I. Chumakov: Three dimensional imaging of atoms with isotropic 0.5 Å resolution, Phys. Rev. Lett. 82, 4847 (1999)

    ADS  Google Scholar 

  206. M. Tegze, G. Faigel, S. Marchesini, M. Belakhovsky, O. Ulrich: Imaging light atoms by X-ray holography, Nature 407, 38 (2000)

    ADS  Google Scholar 

  207. P. Korecki, J. Korecki, T. Ślȩzak: Atomic resolution γ-ray holography using the Mössbauer effect, Phys. Rev. Lett. 79, 3518 (1997)

    ADS  Google Scholar 

  208. P. Korecki, M. Szymnoński, J. Korecki, T. Ślȩzak: Site-selective holographic imaging of iron arrangements in magnetite, Phys. Rev. Lett. 92, 205501 (2004)

    ADS  Google Scholar 

  209. B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, J. Katsaras: Atomic structure holography using thermal neutrons, Nature 414, 525 (2001)

    ADS  Google Scholar 

  210. L. Cser, G. Török, G. Krexner, M. Prem, I. Sharkov: Neutron holographic study of palladium hydride, Appl. Phys. Lett. 85, 1149 (2004)

    ADS  Google Scholar 

  211. L. Cser, G. Török, G. Krexner, I. Sharkov, B. Faragó: Holographic imaging of atoms using thermal neutrons, Phys. Rev. Lett. 89, 175504 (2002)

    ADS  Google Scholar 

  212. P. Korecki, G. Materlik, P. Korecki: Complex γ-ray hologram: Solution to twin images problem in atomic resolution imaging, Phys. Rev. Lett. 86, 1534 (2001)

    ADS  Google Scholar 

  213. Y. Takahashi, K. Hayashi, E. Matsubara: Complex X-ray holography, Phys. Rev. B 68, 052103 (2003)

    ADS  Google Scholar 

  214. R. A. Rupp, J. Hehmann, R. Matull, K. Ibel: Neutron diffraction from photoinduced gratings in a PMMA matrix, Phys. Rev. Lett. 64, 301 (1990)

    ADS  Google Scholar 

  215. M. Fally: The photo-neutronrefractive effect, Appl. Phys. B 75, 405–426 (2002)

    ADS  Google Scholar 

  216. U. Schellhorn, R. A. Rupp, S. Breer, R. P. May: The first neutron interferometer built of holographic gratings, Physica B 234-236, 1068–1070 (1997)

    ADS  Google Scholar 

  217. C. Pruner, M. Fally, R. A. Rupp, R. P. May, J. Vollbrandt: Interferometer for cold neutrons, Nucl. Instrum. Meth. A 560, 598 (2006)

    ADS  Google Scholar 

  218. M. Fally, C. Pruner, R. A. Rupp, G. Krexner: Neutron physics with photorefractive materials, Springer Ser. Opt. Sci., Vol. 115 (Springer, Berlin, New York 2007) pp. 317–349

    Google Scholar 

  219. NSIC: NSIC-OIDA Optical Disk Storage Roadmap (National Storage Industry Consortium and Optoelectronics Industry Development Association, San Diego 1997)

    Google Scholar 

  220. NSIC: NSIC Optical Disk Storage Roadmap (National Storage Industry Consortium, San Diego 2000)

    Google Scholar 

  221. NSIC: NSIC Optical Disk Storage Roadmap (National Storage Industry Consortium, San Diego 2003)

    Google Scholar 

  222. http://www.mpeg.org/MPEG/DVD/

  223. http://www.ee.washington.edu/conselec/CE/kuhn/doit96/dhome.htm

  224. http://www.sony.net/SonyInfo/News/Press/200202/02-0219E/

  225. A. B. Marchant: Optical Recording (Addison-Wesley, Boston 1990)

    Google Scholar 

  226. M. Mansuripur, G. Sincerbox: Principles and Techniques of Optical Data Storage, Proc IEEE 85(11), 1780–1796 (1997)

    Google Scholar 

  227. ECMA-267 Standard: 120 mm DVD – Read-only disk, http://www.ecma.ch, Dec. 1999

  228. W. S. Oakley: A novel digital optical tape recorder, Proc. SPIE 2604, 265 (1995)

    Google Scholar 

  229. D. A. Thompson, J. S. Best: The future of magnetic data storage technology, IBM J. R. Devel. 44(3), 311–322 (2000)

    Google Scholar 

  230. T. L. Wong, M. P. OʼNeill: Multilevel optical recording, J. Magn. Soc. Jpn. 25(3), 433–436 (2001)

    Google Scholar 

  231. M. Mansuripur: The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, Cambridge 1995)

    Google Scholar 

  232. B. D. Terris, H. J. Mamin, D. Rugar: Near-field optical data storage, Appl. Phys. Lett. 68(2), 141–143 (1996)

    ADS  Google Scholar 

  233. M. Kaneko, K. Aratani, M. Ohta: Multilayered Magnetooptical Disks for Magnetically Induced Superresolution, Jpn. J. Appl. Phys. 31(2B), 568 (1992)

    ADS  Google Scholar 

  234. H. Awano, S. Ohnuki, H. Shirai, N. Ohta: Magnetic amplifying magneto-optical system. In: Optical Data Storage, Proc. SPIE, Vol. 3109, ed. by H. Birecki, J. Kwiecien (SPIE, Bellingham 1997) p. 83

    Google Scholar 

  235. Y. V. Martynov, H. A. Wierenga: Migration path of optical storage drives and media, J. Inf. Storage Proces. Syst. 2(1), 93–100 (2000)

    Google Scholar 

  236. C3D, White paper, Constellation 3D, (Jun 2000), http://www.c-3d.net/whitepaper.html

  237. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis: Potentials of two-photon based 3D optical memories for high performance computing, Appl. Opt. 29(14), 2058–2066 (1990)

    ADS  Google Scholar 

  238. S. Kawata, Y. Kawata: Three-dimensional optical data storage using photochromic materials, Chem. Rev. 100(5), 1777–1788 (2000)

    Google Scholar 

  239. K. Yamasaki, S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, H. Misawa: Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films, Appl. Phys. Lett. 76(8), 1000–1002 (2000)

    ADS  Google Scholar 

  240. F. B. McCormick, H. Zhang, A. Dvomikov, E. Walker, C. Chapman, N. Kim, J. Costa, S. Esener, P. Rentzepis: Parallel access 3D multilayer optical storage using 2-photon recording. In: Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, Proc. SPIE, Vol. 3802, ed. by P. A. Mitkas, Z. U. Hasan, H. J. Coufal, G. T. Sincerbox (SPIE, Bellingham 1999) pp. 173–182

    Google Scholar 

  241. I. Cokgor, F. B. McCormick, A. S. Dvornikov, M. M. Wang, N. Kim, K. Coblentz, S. C. Esener, P. M.  Rentzepis: Multilayer disk recording using 2-photon absorption and the numerical simulation of the recording process. In: Optical Data Storage, Proc. SPIE, Vol. 3109, ed. by H. Birecki, J. Kwiecien (SPIE, Bellingham 1997) pp. 54–55

    Google Scholar 

  242. S. R. Chinn, E. A. Swanson: Multilayer optical storage by low-coherence reflectometry, Opt. Lett. 21(12), 899–901 (1996)

    ADS  Google Scholar 

  243. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto: Optical Coherence Tomography, Science 254(5035), 1178–1181 (1991)

    ADS  Google Scholar 

  244. W. E. Moerner: Molecular electronics for frequency domain optical storage: persistent spectral hole-burning a review, J. Molec. Electr. 1(1), 55–71 (1985)

    ADS  Google Scholar 

  245. W. E. Moerner (ed.): Persistent Spectral Hole Burning: Science and Applications (Springer, New York 1988)

    Google Scholar 

  246. T. W. Mossberg: Time-domain frequency-selective optical data storage, Opt. Lett. 7(2), 77–79 (1982)

    ADS  Google Scholar 

  247. E. S. Maniloff, A. E. Johnson, T. W. Mossberg: Spectral data storage using rare-earth-doped crystals, MRS Bulletin 24(9), 46–50 (1999)

    Google Scholar 

  248. G. Sincerbox (ed.): Selected papers on holographic data storage, SPIE Milestone Series, Vol. MS95 (SPIE, Bellingham 1994)

    Google Scholar 

  249. H. J. Coufal, D. Psaltis, G. Sincerbox (eds.): Holographic Data Storage (Springer, Berlin 2000)

    MATH  Google Scholar 

  250. J. W. Goodman: Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York 1996)

    Google Scholar 

  251. F. Ito, K. Kitayama, H. Oguri: Holographic Image Storage in LiNbO3 Fibers with Compensation for Intrasignal Photorefractive Coupling, J. Opt. Soc. Am. B 9(8), 1432–1439 (1992)

    ADS  Google Scholar 

  252. A. Aharoni, M. C. Bashaw, L. Hesselink: Distortion-Free Multiplexed Holography in Striated Photorefractive Media, Appl. Opt. 32(11), 1973–1982 (1993)

    ADS  Google Scholar 

  253. J. J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis: Compact, integrated dynamic holographic memory with refreshed holograms, Opt. Lett. 22(8), 552–554 (1997)

    ADS  Google Scholar 

  254. F. Zhao, K. Sayano: High density phase-conjugate holographic memory with phase-only image compressors, Opt. Mem. Neur. Net. 6(4), 261–264 (1997)

    Google Scholar 

  255. G. W. Burr, I. Leyva: Multiplexed phase-conjugate holographic data storage with a buffer hologram, Opt. Lett. 25(7), 499–501 (2000)

    ADS  Google Scholar 

  256. D. Psaltis, D. Brady, K. Wagner: Adaptive optical networks using photorefractive crystals, Appl. Opt. 27(9), 1752–1759 (1988)

    ADS  Google Scholar 

  257. B. J. Goertzen, P. A. Mitkas: Volume holographic storage for large relational databases, Opt. Eng. 35(7), 1847–1853 (1995)

    ADS  Google Scholar 

  258. G. W. Burr, S. Kobras, H. Hanssen, H. Coufal: Content–addressable data storage by use of volume holograms, Appl. Opt. 38(32), 6779–6784 (1999)

    ADS  Google Scholar 

  259. P. A. Mitkas, G. W. Burr: Volume holographic optical correlators. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 429–445

    Google Scholar 

  260. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox: Holographic data storage, IBM J. Res. Dev. 44(3), 341–368 (May 2000)

    Google Scholar 

  261. P. J. van Heerden: Theory of optical information storage in solids, Appl. Opt. 2(4), 393–401 (1963)

    ADS  Google Scholar 

  262. D. Psaltis, F. Mok: Holographic Memories, Scient. Amer 273(5), 70–76 (1995)

    ADS  Google Scholar 

  263. J. F. Heanue, M. C. Bashaw, L. Hesselink: Volume holographic storage and retrieval of digital data, Science 265(5173), 749–752 (1994)

    ADS  Google Scholar 

  264. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek: Volume holographic memory systems: techniques and architectures, Opt. Eng. 34(8), 2193–2203 (1995)

    ADS  Google Scholar 

  265. D. Psaltis, G. W. Burr: Holographic data storage, Computer 31(2), 52 (1998)

    Google Scholar 

  266. W. C. Stewart, R. S. Mezrich, L. S. Cosentin, E. M. Nagle, F. S. Wendt, R. D. Lohman: Experimental Read-Write Holographic Memory, RCA Review 34(1), 3–44 (1973)

    Google Scholar 

  267. L. DʼAuria, J. P. Huignard, C. Slezak, E. Spitz: Experimental holographic read-write memory using 3D storage, Appl. Opt. 13(4), 808–818 (1974)

    ADS  Google Scholar 

  268. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, R. M. Shelby: Volume holographic data storage at areal density of 250 gigapixels/in2, Opt. Lett. 26(7), 444–446 (2001)

    ADS  Google Scholar 

  269. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, R. Snyder: High-transfer-rate high-capacity holographic disk data-storage system, Appl. Opt. 43(25), 4902–4914 (2004)

    ADS  Google Scholar 

  270. J. A. Ma, T. Chang, S. Choi, J. Hong: Ruggedized digital holographic data storage with fast access, Opt. Quant. Electr. 32(3), 383–392 (2000)

    Google Scholar 

  271. G. Barbastathis, D. Psaltis: Volume holographic multiplexing methods. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 21–62

    Google Scholar 

  272. D. L. Staebler, J. J. Amodei, W. Phillips: Multiple storage of thick holograms in LiNbO3, IEEE J. Quantum Elect. 8(6), 611 (1972)

    ADS  Google Scholar 

  273. F. H. Mok, M. C. Tackitt, H. M. Stoll: Storage of 500 high-resolution holograms in a LiNbO3 crystal, Opt. Lett. 16(8), 605–607 (1991)

    ADS  Google Scholar 

  274. G. A. Rakuljic, V. Leyva, A. Yariv: Optical data storage by using orthogonal wavelength-multiplexed volume holograms, Opt. Lett. 17(20), 1471–1473 (1992)

    ADS  Google Scholar 

  275. J. E. Ford, Y. Fainman, S. H. Lee: Array interconnection by phase-coded optical correlation, Opt. Lett. 15(19), 1088–1090 (1990)

    ADS  Google Scholar 

  276. C. Denz, G. Pauliat, G. Roosen, T. Tschudi: Volume hologram multiplexing using a deterministic phase encoding method, Opt. Commun. 85(2–3), 171–176 (1991)

    ADS  Google Scholar 

  277. Z. Q. Wen, Y. Tao: Orthogonal codes and cross-talk in phase-code multiplexed volume holographic data storage, Opt. Commun. 148(1–3), 11–17 (1998)

    ADS  Google Scholar 

  278. K. T. Kim, B. C. Cho, E. S. Kim, S. K. Gil: Performance analysis of phase-code multiplexed holographic memory, Appl. Opt. 39(23), 4160–4167 (2000)

    ADS  Google Scholar 

  279. D. Psaltis, X. Gu, D. Brady: Fractal sampling grids for holographic interconnections, Proc. SPIE 963, 468–474 (1988)

    ADS  Google Scholar 

  280. G. W. Burr: Volume holographic storage using the 90° geometry, PhD thesis (California Institute of Technology, Pasadena, Calif. 1996)

    Google Scholar 

  281. X. An, D. Psaltis, G. W. Burr: Thermal fixing of 10000 holograms in LiNbO3:Fe, Appl. Opt. 38(2), 386–393 (1999)

    ADS  Google Scholar 

  282. W. S. Colburn, K. A. Haines: Volume hologram formation in photopolymer materials, Appl. Opt. 10(7), 1636–1641 (1971)

    ADS  Google Scholar 

  283. R. T. Ingwall, M. Troll: Mechanism of Hologram Formation in DMP-128 Photopolymer, Opt. Eng. 28(6), 586–591 (1989)

    Google Scholar 

  284. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd: Temperature-induced changes in photopolymer volume holograms, Appl. Phys. Lett. 73(10), 1337–1339 (1998)

    ADS  Google Scholar 

  285. R. T. Ingwall, D. Waldman: Photopolymer systems. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 171–198

    Google Scholar 

  286. L. Dhar, M.,G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, A. L. Harris: Photopolymers for digital holographic data storage. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 199–208

    Google Scholar 

  287. L. Paraschis, Y. Sugiyama, A. Akella, T. Honda, L. Hesselink: Properties of compositional volume grating formation with photoinitiated cationic-ring-opening polymerization. In: Conference on Advanced Optical Memories and Interfaces to Computer Storage, Proc. SPIE, Vol. 3468 (SPIE, Bellingham 1998) pp. 55–61

    Google Scholar 

  288. T. Bieringer, R. Wuttke, D. Haarer: Relaxation of Holographic Gratings in Liquid-Crystalline Side-Chain Polymers with Azo Chromophores, Macr. Chem. Phys. 196(5), 1375–1390 (1995)

    Google Scholar 

  289. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis: Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory, Opt. Lett. 23(16), 1310–1312 (1998)

    ADS  Google Scholar 

  290. R. M. Shelby, D. A. Waldman, R. T. Ingwall: Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media, Opt. Lett. 25(10), 713–715 (2000)

    ADS  Google Scholar 

  291. G. W. Burr, T. Weiss: Compensation for pixel misregistration in volume holographic data storage, Opt. Lett. 26(8), 542–544 (2001)

    ADS  Google Scholar 

  292. G. W. Burr: Holographic data storage with arbitrarily misaligned data pages, Opt. Lett. 27(7), 542–544 (2002)

    ADS  Google Scholar 

  293. J. A. Hoffnagle, C. M. Jefferson: Design and performance of a refractive optical system that converts a Gaussian to a flattop beam, Appl. Opt. 39(30), 5488–5499 (2000)

    ADS  Google Scholar 

  294. K. Curtis, A. Pu, D. Psaltis: Method for holographic storage using peristrophic multiplexing, Opt. Lett. 19(13), 993–994 (1994)

    ADS  Google Scholar 

  295. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis: Holographic storage using shift multiplexing, Opt. Lett. 20(7), 782–784 (1995)

    ADS  Google Scholar 

  296. V. B. Markov: Spatial-angular selectivity of 3D speckle-wave holograms and information storage, J. Imag. Sci. Tech. 41(4), 383–388 (1997)

    Google Scholar 

  297. D. Von der Linde, A. M. Glass: Photorefractive effects for reversible holographic storage of information, Appl. Phys. 8, 85–100 (1975)

    ADS  Google Scholar 

  298. P. Gunter: Holography, coherent light amplification and optical phase conjugation with photorefractive materials, Phys. Rep. 4, 199–299 (1982)

    ADS  Google Scholar 

  299. T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote: The photorefractive effect – a review, Progress Quantum Electron. 10, 77–146 (1985)

    ADS  Google Scholar 

  300. K. Buse, E. Kratzig: Inorganic photorefractive materials. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 113–126

    Google Scholar 

  301. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner: Observation of the Photorefractive Effect in a Polymer, Phys. Rev. Lett. 66(14), 1846–1849 (1991)

    ADS  Google Scholar 

  302. B. Kippelen, L. P. H. O. N. Sanda, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall: New Highly Efficient Photorefractive Polymer Composite for Optical-Storage and Image-Processing Applications, Electr. Lett. 29(21), 1873–1874 (1993)

    Google Scholar 

  303. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian: A photorefractive polymer with high optical gain and diffraction efficiency near 100 %, Nature 371(6497), 497–500 (1994)

    ADS  Google Scholar 

  304. W. E. Moerner, S. M. Silence: Polymeric Photorefractive Materials, Chem. Rev. 94(1), 127–155 (1994)

    Google Scholar 

  305. D. Oesterhelt, C. Brauchle, N. Hampp: Bacteriorhodopsin – a Biological-Material for Information-Processing, Quart. Rev. Biophys. 24(4), 425–478 (1991)

    Google Scholar 

  306. J. D. Downie, D. T. Smithey: Red–shifted photochromic behavior of a bacteriorhodopsin film made from the L93t genetic variant, Opt. Lett. 21(9), 680–682 (1996)

    ADS  Google Scholar 

  307. N. Hampp: Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev. 100(5), 1755–1776 (2000)

    Google Scholar 

  308. R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin: Diffraction from Optically Written Persistent Plasma Gratings in Doped Compound Semiconductors, Appl. Phys. Lett. 65(1), 16–18 (1994)

    ADS  Google Scholar 

  309. P. Gunter, J.-P. Huignard (eds.): Topics in Applied Physics: Photorefractive Materials and Their Applications I – Fundamental Phenomena, Vol. 61 (Springer, Berlin 1988)

    Google Scholar 

  310. Y. P. Yang, I. Nee, K. Buse, D. Psaltis: Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals, Appl. Phys. Lett. 78(26), 4076–4078 (2001)

    ADS  Google Scholar 

  311. F. H. Mok, G. W. Burr, D. Psaltis: System metric for holographic memory systems, Opt. Lett. 21(12), 896–898 (1996)

    ADS  Google Scholar 

  312. K. Curtis, D. Psaltis: Characterization of the DuPont photopolymer for three-dimensional holographic storage, Appl. Opt. 33(23), 5396–5399 (1994)

    ADS  Google Scholar 

  313. J. J. Amodei, D. L. Staebler: Holographic Pattern Fixing in Electro-Optic Crystals, Appl. Phys. Lett. 18(12), 540–542 (1971)

    ADS  Google Scholar 

  314. D. L. Staebler, J. J. Amodei: Thermally fixed holograms in LiNbO3, Ferroelectrics 3, 107–113 (1972)

    Google Scholar 

  315. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Kratzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56(3), 1225–1235 (1997)

    ADS  Google Scholar 

  316. G. A. Rakuljic: Prescription for long-lifetime, high-diffraction-efficiency fixed holograms in Fe-doped LiNbO3, Opt. Lett. 22(11), 825–827 (1997)

    ADS  Google Scholar 

  317. L. Arizmendi, E. M. de Miguel-Sanz, M. Carrascosa: Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals, Opt. Lett. 23(12), 960–962 (1998)

    ADS  Google Scholar 

  318. F. Micheron, G. Bismuth: Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials, Appl. Phys. Lett. 20(2), 79 (1972)

    ADS  Google Scholar 

  319. S. Orlov, D. Psaltis, R. R. Neurgaonkar: Dynamic Electronic Compensation of Fixed Gratings in Photorefractive Media, Appl. Phys. Lett. 63(18), 2466–2468 (1993)

    ADS  Google Scholar 

  320. Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar: Phase-locked sustainment of photorefractive holograms using phase conjugation, J. Appl. Phys. 70(8), 4646–4648 (1991)

    ADS  Google Scholar 

  321. H. C. Kulich: Transfer function for image formation of objects reconstructed from volume holograms with different wavelengths, Appl. Opt. 31(14), 2461–2477 (1992)

    ADS  Google Scholar 

  322. D. Psaltis, F. Mok, H. S. Li: Nonvolatile storage in photorefractive crystals, Opt. Lett. 19(3), 210–212 (1994)

    ADS  Google Scholar 

  323. D. Von der Linde, A. M. Glass, K. F. Rodgers: Multiphoton photorefractive processes for optical storage in LiNbO3, Appl. Phys. Lett. 25(3), 155–157 (1974)

    ADS  Google Scholar 

  324. H. Guenther, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar: Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3, Opt. Lett. 22(17), 1305–1307 (1997)

    ADS  Google Scholar 

  325. K. Buse, A. Adibi, D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals, Nature 393(6686), 665–668 (1998)

    ADS  Google Scholar 

  326. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar: Photorefractive materials for nonvolatile volume holographic data storage, Science 282(5391), 1089–1094 (1998)

    ADS  Google Scholar 

  327. R. Macfarlane, H. Guenther, Y. Furukawa, L. Kitamura: Two-color holography in lithium niobate. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 149–158

    Google Scholar 

  328. S. S. Orlov: Volume holographic data storage, Communications of the ACM 43(11), 46–54 (2000)

    Google Scholar 

  329. W. H. Liu, D. Psaltis: Pixel size limit in holographic memories, Opt. Lett. 24(19), 1340–1342 (1999)

    ADS  Google Scholar 

  330. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar: Two-color holography in reduced near-stoichiometric lithium niobate, Appl. Opt. 37(32), 7611–7623 (1998)

    ADS  Google Scholar 

  331. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling: Recording media that exhibit high dynamic range for digital holographic data storage, Opt. Lett. 24(7), 487–489 (1999)

    ADS  Google Scholar 

  332. G. Zhou, F. Mok, D. Psaltis: Beam deflectors and spatial light modulators for holographic storage applications. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 241–258

    Google Scholar 

  333. K. Curtis, W. L. Wilson, M. C. Tackitt, A. J. Hill, S. Campbell: High-density, high-performance data storage via volume holography: the Lucent Technologies hardware platform. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 359–368

    Google Scholar 

  334. G. W. Burr, H. Hanssen, S. Kobras, H. Coufal: Analog optical correlation of volume holograms for searching digital databases (Optics in Computing ʼ99, Snowmass 1999)

    Google Scholar 

  335. H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt: High-density disk storage by multiplexed microholograms, IEEE J. Sel. Top. Quant. Electr. 4(5), 840–848 (1998)

    Google Scholar 

  336. A. Labeyrie, J. P. Huignard, B. Loiseaux: Optical data storage in microfibers, Opt. Lett. 23(4), 301–303 (1998)

    ADS  Google Scholar 

  337. G. W. Burr: Optical processing using optical memories, 12nd LEOS Ann. Meeting (IEEE, Piscataway 1999) pp. 564–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirco Imlau Dr. , Martin Fally Prof. , Geoffrey Burr Ph.D. or Glenn Sincerbox Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Imlau, M., Fally, M., Coufal†, H., Burr, G., Sincerbox, G. (2007). Holography and Optical Storage. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_20

Download citation

Publish with us

Policies and ethics