Skip to main content

GABA Neurotransmission: An Overview

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

GABA neurotransmission involves biosynthesis and metabolic degradation of GABA, its stimulus-coupled release and receptor interaction, as well as inactivation by high-affinity transport systems in neuronal and astrocytic plasma membranes. These entities are summarized to provide the reader with information about the fundamental properties of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOAA:

amino-oxyacetic acid

BGT-1:

betaine-GABA transporter-1

CACA:

cis-4-aminocrotonic acid

CAMP:

cis-2-(aminomethyl)cyclopropane-1-carboxylic acid

CIT:

citrate

CNS:

central nervous system

EF-1502:

N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol

exo-THPO:

4-amino-4,5,6,7-tetrahydro-1,2-benzo[d]isoxazol-3-ol

GABA:

gamma-aminobutyric acid

GABA-T:

GABA-transaminase

GAD:

glutamic acid decarboxylase

GAT 1–4:

GABA transporters 1–4

Glu:

glutamate

OAA:

oxaloacetate

PAG:

phosphate activated glutaminase

SSA:

succinate semialdehyde

SUC:

succinate

TCA:

tricarboxylic acid

THIP:

4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol

THPO:

4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol

2OG:

2-oxoglutarate

3-APPA:

3-aminopropylphosphonic acid

3-APMPA:

3-aminopropyl(methyl)phosphinic acid

References

  • Andersen KE, Lau J, Lundt BF, Petersen H, Huusfeldt PO, et al. 2001. Synthesis of novel GABA uptake inhibitors. Part 6: Preparation and evaluation of N-Omega asymmetrically substituted nipecotic acid derivatives. Bioorg Med Chem 9: 2773–2785.

    Article  CAS  PubMed  Google Scholar 

  • Andersen KE, Sørensen JL, Huusfeldt PO, Knutsen LJ, Lau J, et al. 1999. Synthesis of novel GABA uptake inhibitors. 4. Bioisosteric transformation and successive optimization of known GABA uptake inhibitors leading to a series of potent anticonvulsant drug candidates. J Med Chem 42: 4281–4291.

    Article  CAS  PubMed  Google Scholar 

  • Awapara J, Landua AJ, Fuerst R, Seale B. 1950. Free γ-aminobutyric acid in brain. J Biol Chem 187: 35–39.

    CAS  PubMed  Google Scholar 

  • Balazs R, Dahl D, Harwood JR. 1966. Subcellular distribution of enzymes of glutamate metabolism in rat brain. J Neurochem 13: 897–905.

    Article  CAS  PubMed  Google Scholar 

  • Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D. 1970. The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116: 445-461.

    CAS  PubMed  Google Scholar 

  • Balcar VJ, Johnston GAR. 1973. High affinity uptake of transmitters: Studies on the uptake of l-aspartate, GABA, l-glutamate, and glycine in cat spinal cord. J Neurochem 20: 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Beart PM, Johnston GAR. 1973. GABA uptake in rat brain slices: Inhibition by GABA analogues and by various drugs. J Neurochem 20: 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Beart PM, Johnston GR. 1973. GABA uptake in rat brain slices: Inhibition by GABA analogues and by various drugs. J Neurochem 20: 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Belhage B, Hansen GH, Schousboe A. 1993. Depolarization by K +  and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: Vesicular versus non-vesicular release of GABA. Neuroscience 54: 1019–1034.

    Article  CAS  PubMed  Google Scholar 

  • Belhage B, Hansen GH, Elster E, Schousboe A. 1998. Effects of γ-aminobutyric acid (GABA) on synaptogenesis and synaptic function. Perspect Dev Neurobiol 5: 235–246.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y. 2002. Excitatory actions of GABA during development: The nature of the nurture. Nat Rev Neurosci 3: 728–739 (Review).

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. 1989. Giant synaptic potentials in immature rat CA3 hippocampal neurons. J Physiol 416: 303–325.

    CAS  PubMed  Google Scholar 

  • Bernath S. 1991. Calcium-independent release of amino acid neurotransmitters: Fact or artifact? Prog Neurobiol 38: 57–91.

    Article  Google Scholar 

  • Bettler B, Bräuner-Osborne H. 2004. The GABAB receptor: from cloning to knockout mice. Molecular Neuropharmacology: Strategies and Methods. Schousboe A, Bräuner-Osborne H, editors. Totowa, NJ: Humana Press; pp. 129–145.

    Google Scholar 

  • Bloch-Tardy M, Rolland B, Gonnard P. 1974. Pig brain 4-aminobutyrate 2-ketoglutarate transaminase. Purification, kinetics and physical properties. Biochimie 56: 823–832.

    CAS  Google Scholar 

  • Bloom FE, Iversen LL. 1971. Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature 229: 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, et al. 1980. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283: 92–94.

    Article  CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJS, Andersen KE, et al. 1990. (R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J Neurochem 54: 639–647.

    Article  CAS  PubMed  Google Scholar 

  • Cash C, Maitre M, Ciesielski L, Mandel P. 1974. Purification and partial characterisation of 4-aminobutyrate 2-ketoglutarae transaminase from human brain. FEBS Lett 47: 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Cherubini E, Gaiarsa JL, Ben-Ari Y. 1991. GABA: An excitatory transmitter in early postnatal life. TINS 14: 515–519.

    CAS  PubMed  Google Scholar 

  • Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, et al. 2005. Selective inhibitors of GABA uptake: Synthesis and molecular pharmacology of 3-hydroxy-4-N-methylamino-4,5,6,7-tetrahydro-1,2-benzo[d]isoxazole analogues. Bioorg Med Chem 13: 895–908.

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR, Johnston GAR. 1974. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69: 97–188.

    CAS  PubMed  Google Scholar 

  • Curtis DR, Watkins JC. 1960. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6: 117–141.

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO. 2003. Inhibition of gamma-aminobutyric acid uptake: Anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 479: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Deisz RA. 1997. Electrophysiology of GABAB receptors. The GABA Receptors, 2nd edn. Enna SJ, Bowery NG, editors. Totowa, NJ: Humana Press; pp. 157–208.

    Google Scholar 

  • Ebert B, Storustovu S, Mortensen M, Frølund B. 2002. Characterization of GABA(A) receptor ligands in the rat cortical wedge preparation: Evidence for action at extrasynaptic receptors? Br J Pharmacol 137: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kemp JA. 1994. Molecular pharmacology of gamma-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different alpha, beta, and gamma receptor subunit combinations. Mol Pharmacol 46: 957–963.

    CAS  PubMed  Google Scholar 

  • Ebert B, Thompson SA, Saounatsou K, McKernan R, Krogsgaard-Larsen P, et al. 1997. Differences in agonist/antagonist binding affinity and receptor transduction using recombinant human gamma-aminobutyric acid type A receptors. Mol Pharmacol 52: 1150–1156.

    CAS  PubMed  Google Scholar 

  • Engblom AC, Carlson BX, Olsen RW, Schousboe A, Kristiansen U. 2002. Point mutation in the first transmembrane region of the beta2 subunit of the gamma-aminobutyric acid type A receptor alters desensitization kinetics of gamma-aminobutyric acid- and anesthetic-induced channel gating. J Biol Chem 277: 17438–17447.

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ, Kuhar MJ, Snyder SH. 1975. Regional distribution of postsynaptic receptor binding for gamma-aminobutyric acid (GABA) in monkey brain. Brain Res 93: 168-174.

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ, Snyder SH. 1975. Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res 100: 81–97.

    Article  CAS  PubMed  Google Scholar 

  • Falch E, Perregaard J, Frølund B, Søkilde B, Buur A, et al. 1999. Selective inhibitors of glial GABA uptake: Synthesis, absolute stereochemistry and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and analogues. J Med Chem 42: 5402–5414.

    Article  CAS  PubMed  Google Scholar 

  • Fiszman ML, Schousboe A. 2004. Role of calcium and kinases on the neurotrophic effect induced by γ-aminobutyric acid. J Neurosci Res 76: 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Frølund B, Jørgensen AT, Liljefors T, Mortensen M, Krogsgaard-Larsen P. 2004. Characterization of the GABAA receptor recognition site through ligand design and pharmacophore modelling. Molecular Neuropharmacology: Strategies and Methods. Schousboe A, Bräuner-Osborne H, editors. Totowa, NJ: Humana Press; pp. 113–127.

    Google Scholar 

  • Gram L, Larsson OM, Johnsen AH, Schousboe A. 1988. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2: 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, et al. 1990. Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez R. 2003. The GABAergic phenotype of the glutamatergic granule cells of the dentate gyrus. Prog Neurobiol 71: 337–358.

    Article  CAS  PubMed  Google Scholar 

  • Haefely W, Kuskar A, Möhler H, Pieri L, Polc P, et al. 1975. Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 14: 131–152.

    CAS  PubMed  Google Scholar 

  • Henn FA, Hamberger A. 1971. Glial cell function: Uptake of transmitter substances. Proc Natl Acad Sci USA 68: 2686–2690.

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A. 1989b. Preparation of primary cultures of mouse (rat) astrocytes. In: A Dissection and Tissue Culture Manual for the Nervous System. Shahar A, De Vellis J, Vernadakis A, Haber B, editors. New York: Alan R, Liss: pp. 105-108.

    Google Scholar 

  • Hertz E, Yu ACH, Hertz, L, Juurlink BHJ, Schousboe A. 1989a. Preparation of primary cultures of mouse cortical neurons. In: A Dissection and Tissue Culture Manual for the Nervous System. Shahar A, De Vellis J, Vernadakis A, Haber B, editors. New York: Alan R, Liss: 183-186.

    Google Scholar 

  • Hökfelt T, Ljungdahl Ã…. 1970. Cellular localization of labelled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: An autoradiographic study. Brain Res 22: 391–396.

    Article  PubMed  Google Scholar 

  • Hutchison HT, Werrbach K, Cance C, Haber B. 1974. Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture. I. Transport of γ-aminobutyric acid. Brain Res 66: 265–274.

    Article  Google Scholar 

  • Iadarola MJ, Gale K. 1980. Evaluation of increases in nerve terminal-dependent vs nerve terminal-independent compartments of GABA in vivo. Brain Res Bull 5(Suppl.)2: 13–19.

    Article  CAS  Google Scholar 

  • Iversen LL, Bloom FE. 1972. Studies on the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41: 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL, Johnston GAR. 1971. GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem 18: 1939–1950.

    Article  CAS  PubMed  Google Scholar 

  • Jensen ML, Schousboe A, Ahring P. 2005. Charge selectivity of the Cys-loop family of ligand gated ion channels. J Neurochem 92: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • John RA, Fowler LJ. 1976. Kinetic and spectral properties of rabbit brain 4-aminobutyrate aminotransferase. Biochem J 155: 645–651.

    CAS  PubMed  Google Scholar 

  • Johnston GAR. 1997. Molecular biology, pharmacology, and physiology of GABAC receptors. The GABA Receptors, 2nd edn. Enna SJ, Bowery NG, editors. Totowa, NJ: Humana Press; pp. 297–323.

    Google Scholar 

  • Kalviainen R. 2002. Tiagabine. Clinical Efficacy and Use in Epilepsy. Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Philadelphia: Lippincott Williams & Wilkins; pp. 699–704.

    Google Scholar 

  • Klix N, Bettler B. 2002. Molecular structure of the GABAB receptors. Glutamate and GABA Receptors and Transporters. Egebjerg J, Schousboe A, Krogsgaard-Larsen P, editors. London, UK: Taylor & Francis; pp. 277–286.

    Google Scholar 

  • Knutsen LJ, Andersen KE, Lau J, Lundt BF, HenryRF, et al. 1999. Synthesis of novel GABA uptake inhibitors. 3. Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine as anticonvulsant agents. J Med Chem 42: 3447–3462.

    Article  CAS  PubMed  Google Scholar 

  • Krnjevic K, Schwartz S. 1967. The action of γ-aminobutyric acid on cortical neurons. Exp Brain Res 3: 320–336.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Johnston GAR. 1975. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem 25: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Ebert B. 1997. GABAA receptor agonists, partial agonists, and antagonists. The GABA Receptors, 2nd edn. Enna SJ, Bowery NG, editors. Totowa, NJ: Humana Press; pp. 37–81.

    Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Kristiansen U, Ebert B. 2002. Ligands for the GABAA receptor complex. Glutamate and GABA Receptors and Transporters. Egebjerg J, Schousboe A, Krogsgaard-Larsen P, editors. London, UK: Taylor & Francis; pp. 236–274.

    Google Scholar 

  • Kvamme E, Torgner IA, Roberg B. 2001. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66: 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A. 1985. Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Devl Neurosci 3: 177-185.

    Article  CAS  Google Scholar 

  • Larsson OM, Gram L, Schousboe I, Schousboe A. 1986. Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes. Neuropharmacology 25: 617–625.

    Article  CAS  PubMed  Google Scholar 

  • Levi G, Raiteri M. 1973. Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes. Life Sci 12: 81–88.

    Article  CAS  Google Scholar 

  • Lippert B, Metcalf BW, Jung MJ, Casara P. 1977. 4-Aminohex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric acid aminotransferase in mammalian brain. Eur J Biochem 74: 441–445.

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N. 1993. Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268: 2104–2112.

    Google Scholar 

  • Machiyama Y, Balázs R, Hammond BJ, Julian T, Richter D. 1970. The metabolism of γ-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro. Biochem J 116: 469–481.

    CAS  PubMed  Google Scholar 

  • Maitre M, Ciesielski L, Cash C, Mandel P. 1975. Purification and studies on some properties of the 4-aminobutyrate: 2-oxoglutarate transaminase from rat brain. Eur J Biochem 52: 157–169.

    Article  CAS  PubMed  Google Scholar 

  • Martin DL, Rimval K. 1993. Regulation of γ-aminobutyric acid synthesis in the brain. J Neurochem 60: 395–407.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Wu J-Y, Roberts E. 1973. Electrophoresis of glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain in sodium dodecyl sulphate polyacrylamide gels. J Neurochem 21: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • McKernan RM, Whiting PJ. 1996. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K, Barber R, Vaughn JE, et al. 1974. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res 76: 377–391.

    Article  CAS  PubMed  Google Scholar 

  • Möhler H, Okada T. 1977. Benzodiazepine receptors: Demonstration in the central nervous system. Science 198: 849–851.

    Article  PubMed  Google Scholar 

  • Mody I. 2001. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Olsen RW, Macdonald RL. 2002. GABAA receptor complex: Structure and complex. Glutamate and GABA Receptors and Transporters. Egebjerg J, Schousboe A, Krogsgaard-Larsen P, editors. London, UK: Taylor & Francis; pp. 202–235.

    Google Scholar 

  • Otsuka M. 1996. Establishment of GABA as an inhibitory neurotransmitter at crustacean neuromuscular junction and in the mammalian central nervous system. GABA: Receptors, Transporters and Metabolism. Tanaka C, Bowery NG, editors. Basel: Birkhäuser Verlag; pp. 1–6.

    Google Scholar 

  • Palaiologos G, Hertz L, Schousboe A. 1988. Evidence that aspartate amino transferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51: 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Peck EJ, Jr, Schaeffer JM, Clark JH. 1973. γ-Aminobutyric acid, bicuculline, and post-synaptic binding sites. Biochem Biophys Res Commun 52: 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Bockaert J. 1989. Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J Neurosci 9: 648–656.

    CAS  PubMed  Google Scholar 

  • Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, et al. 2001. Epileptogenesis and enhanced prepulse inhibition in GABAB1-deficient mice. Mol Cell Neurosci 17: 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC, Van den Berg CJ, Cuénod M. 1978. Glutamine as precursor for the GABA and glutamate transmitter pools. Neurosci Lett 10: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E. 1976. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res 116: 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Roberts E, Frankel S. 1950. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J Biol Chem 187: 55–63.

    CAS  PubMed  Google Scholar 

  • Roberts E, Simonsen DG. 1963. Some properties of l-glutamic decarboxylase in mouse brain. Biochem Pharmacol 12: 113–134.

    Article  CAS  PubMed  Google Scholar 

  • Roberts E, Baxter CF, Van Harreveld A, Wiersma CAG, Adey WR, et al. (eds) 1960. Inhibition in the Nervous System and Gamma-aminobutyric Acid. Oxford: Pergamon Press.

    Google Scholar 

  • Saito K, Barber R, Wu J-Y, Matsuda T, Roberts E, et al. 1974. Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci USA 71: 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Sarup A, Larsson OM, Schousboe A. 2003b. GABA transporters and GABA-transaminase as drug targets. Curr Drug Targ CNS Neurol Dis 2: 269–277.

    Article  CAS  Google Scholar 

  • Sarup A, Larsson OM, Bolvig T, Frølund B, Krogsgaard-Larsen P, et al. 2003a. Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem Int 43: 445–451.

    Article  CAS  Google Scholar 

  • Schousboe A, Kanner B. 2002. GABA transporters: Functional and pharmacological properties. Glutamate and GABA Receptors and Transporters. Egebjerg J, Schousboe A, Krogsgaard-Larsen P, editors. London, UK: Taylor & Francis Publ.; pp. 337–349.

    Google Scholar 

  • Schousboe A, Waagepetersen HS. 2003. GABA. Encyclopedia of Neuroscience. Adelman G, Smith BH, editors. New York, USA: Elsevier Science; pp. 166–176. www.neuroscion.com

  • Schousboe A, Hertz L, Svenneby G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2: 217–229.

    Article  CAS  Google Scholar 

  • Schousboe A, Larsson OM, Seiler N. 1986. Stereoselective uptake of the GABA-transaminase inhibitors gamma-vinyl GABA and gamma-acetylenic GABA into neurons and astrocytes. Neurochem Res 11: 1497–1505.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Lisy V, Hertz L. 1976. Postnatal alterations in effects of potassium on uptake and release of glutamate and GABA in rat brain cortex slices. J Neurochem 26: 1023–1027.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Wu J-Y, Roberts E. 1973. Purification and characterization of the 4-aminobutyrate-2-ketogluterate transaminase from mouse brain. Biochemistry 12: 2868–2873.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Wu J-Y, Roberts E. 1974. Subunit structure and kinetic properties of 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain. J Neurochem 23: 1189–1195.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Larsson OM, Sarup A, White HS. 2004c. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500: 281–287.

    Article  CAS  Google Scholar 

  • Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P. 1983. Transport and metabolism of GABA in neurons and glia: Implications for epilepsy. Epilepsia 24: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Meier E, Drejer J, Hertz L. 1989. Preparation of primary cultures of mouse (rat) cerebellar granule cells. In: A Dissection and Tissue Culture Manual for the Nervous System. Shahar A, De Vellis J, Vernadakis A, Haber B, editors. New York: Alan R, Liss: pp. 203-206.

    Google Scholar 

  • Schousboe A, Sarup A, Larsson OM, White HS. 2004b. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 68: 1557–1563.

    Article  CAS  Google Scholar 

  • Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM. 2004a. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 45: 512–527.

    Article  CAS  Google Scholar 

  • Schousboe I, Bro B, Schousboe A. 1977. Intramitochondrial localization of the 4-aminobutyrate-2-ketoglutarate transaminase from ox brain. Biochem J 162: 303-307.

    CAS  PubMed  Google Scholar 

  • Schrier BK, Thompson EJ. 1974. On the role of glial cells in the mammalian nervous system. Uptake, excretion, metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem 249: 1769–1780.

    CAS  PubMed  Google Scholar 

  • Sloviter M, Dichter MA, Rachinsky TL, Dean E, Goodman JH, et al. 1996. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J Comp Neurol 373: 593–618.

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Martin DL. 1998. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol Sci 19: 500–505.

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Syversen T, Schousboe A, Waagepetersen HS, Aschner M. 2007. Actions of toxins on cerebral metabolism at the cellular level. In: Handbook of Neurochemistry and Molecular Biology, Vol. 5. Lajtha A, editor. Springer-Verlag Berlin Heidelberg, pp. 569-585.

    Google Scholar 

  • Sonnewald U, Olstad E, Qu H, Babot Z, Cristòfol R, et al. 2004. First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. J Neurochem 91: 796–803.

    Article  CAS  PubMed  Google Scholar 

  • Sprince H, Parker CM, Josephs JA, Jr, Magazino J. 1969. Convulsant activity of homocysteine and other short-chain mercaptoacids: Protection therefrom. Ann N Y Acad Sci 166: 323–325.

    Article  CAS  PubMed  Google Scholar 

  • Squires C, Bræstrup RF. 1977. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci USA 74: 3805–3809.

    Article  PubMed  Google Scholar 

  • Tapia R. 1975. Biochemical pharmacology of GABA in CNS. Handbook of Psychopharmacology, Vol. 4. Iverson LL, Iverson SD, Snyder SH, editors. New York: Plunum Publ. Corp.; pp. 1–58.

    Google Scholar 

  • Tapia R, Meza-Ruiz G. 1975. Differences in some properties of newborn and adult brain glutamate decarboxylase. J Neurobiol 6: 171–181.

    Article  CAS  PubMed  Google Scholar 

  • Tapia R, Pasantes-Morales H, Taborda E, Pérez de la Mora M. 1975. Seizure susceptibility in the developing mouse and its relationship to glutamate decarboxylase in pyridoxal phosphate in brain. J Neurobiol 6: 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Udenfriend S. 1950. Identification of γ-aminobutyric acid in brain by the isotope derivative method. J Biol Chem 187: 65–69.

    CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A. 1999. The GABA paradox: Multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem 73: 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A. 2003. Compartmentation of glutamine, glutamate and GABA metabolism in neurons and astrocytes: Functional implications. Neuroscientist 9: 398–403.

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A. 2001. Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C MRS. J Neurosci Res 63: 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Wafford KA, Whiting PJ, Kemp JA. 1993a. Differences in affinity and efficacy of benzodiazepine receptor ligands on recombinant GABAA receptor subtypes. Mol Pharmacol 43: 240–244.

    CAS  Google Scholar 

  • Wafford KA, Bain CJ, Whiting PJ, Kemp JA. 1993b. A functional comparison of the role of γ subunits in recombinant γ-aminobutyric acid type A/benzodiazepine receptors. Mol Pharmacol 43: 437–442.

    Google Scholar 

  • Westergaard N, Sonnewald U, Petersen SB, Schousboe A. 1995. Glutamate and glutamine metabolism in cultured GABAergic neurons studied by 13C NMR spectroscopy: Evidence for compartmentation and mitochondrial heterogeneity. Neurosci Lett 185: 24–28.

    Article  CAS  PubMed  Google Scholar 

  • White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, et al. 2002. Correlation between anticonvulsant activity and inhibitory action on glial GABA uptake of the highly selective mouse GAT1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and its N-alkylated analogs. J Pharmacol Exp Ther 302: 636–644.

    Article  CAS  PubMed  Google Scholar 

  • White HS, Watson WP, Hansen S, Slough S, Sarup A, et al. 2005. First demonstration of a functional role for CNS betaine/GABA transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312: 866–874.

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Kurylo E, Tsui SK. 1981. Interactions of di-n-propylacetate, gabaculine, and aminooxyacetic acid: Anticonvulsant activity and the gamma-aminobutyrate system. J Neurochem 37: 1440–1447.

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Y, Roberts E. 1974. Properties of brain l-glutamate decarboxylase: Inhibition studies. J Neurochem 23: 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Y, Matsuda T, Roberts E. 1973. Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem 248: 3039–3034.

    Google Scholar 

  • Wu J-Y, Moss LG, Chude O. 1978. Distribution and tissue specificity of 4-aminobutyrate-2-oxoglutarate aminotransferase. Neurochem Res 3: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Yu ACH, Hertz L. 1983. Metabolic sources of energy in astrocytes. Glutamine, Glutamate, and GABA in the Central Nervous System. Hertz L, Kvamme E, McGeer EG, Schousboe A, editors. New York: Alan R. Liss, Inc.; pp. 431–438.

    Google Scholar 

  • Zieminska E, Hilgier W, Waagepetersen HS, Hertz L, Sonnewald U, et al. 2004. Analysis of glutamine accumulation in rat brain mitochondria in the presence of a glutamine uptake inhibitor, histidine, reveals glutamine pools with a distinct access to deamidation. Neurochem Res 29: 2121–2123.

    Article  CAS  PubMed  Google Scholar 

  • Zukin SR, Young AB, Snyder SH. 1974. Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71: 4802–4807.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Schousboe, A., Waagepetersen, H.S. (2008). GABA Neurotransmission: An Overview. In: Lajtha, A., Vizi, E.S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30382-6_9

Download citation

Publish with us

Policies and ethics