Skip to main content

Branch and price: Integer programming with column generation; Decomposition techniques for MILP: Lagrangian relaxation; Genetic algorithms; Integer linear complementary problem; Integer programming; Integer programming: Algebraic methods; Integer programming: Branch and cut algorithms; Integer programming: Cutting plane algorithms; Integer programming duality; Integer programming: Lagrangian relaxation; LCP: Pardalos–Rosen mixed integer formulation, Linear programming; Interior point methods; Mixed integer classification problems; Multi-objective integer linear programming; Multi-objective mixed integer programming; Multiparametric mixed integer linear programming; Parametric mixed integer nonlinear optimization; Set covering, packing and partitioning problems; Simplicial pivoting algorithms for integer programming; Stochastic integer programming: Continuity, stability, rates of convergence; Stochastic integer programs; Time-dependent traveling salesman problem INTEGER PROGRAMMING: BRANCH AND BOUND METHODS

branch and bound

  • Reference work entry
Encyclopedia of Optimization

Overview

An integer programming problem (IP) is an optimization problem in which some or all of the variables are restricted to take on only integer values. The exposition presented here will focus on the case in which the objective and constraints of the optimization problem are defined via linear functions. In addition, for simplicity, it will be assumed that all of the variables are restricted to be nonnegative integer valued. Thus, the mathematical formulation of the problem under consideration can be stated as:

where AR m × n, bR m and cR n. For notational convenience, let S denote the constraint set of problem (IP); i.e.,

The classical approach to solving integer programs is branch and bound [39]. The branch and bound method is based on the idea of iteratively partitioning the set S(branching) to form subproblems of the original integer program. Each subproblem is solved — either exactly or approximately — to obtain an upper bound on the subproblem objective value. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen E. D., Gondzio J., Mészáros C., and Xu, X.: ‘Implementation of interior point methods for large scale linear programming’, in T. Terlaky (ed.): Interior Point Methods in Mathematical Programming, Kluwer Acad. Publ., 1996, ftp://ftp.sztaki.hu/pub/oplab/PAPERS/kluwer.ps.Z.

    Google Scholar 

  • Applegate D., Bixby R. E., Chvátal, V., and Cook, W.: ‘On the solution of travelling salesman problems’, Documenta Math. no. Extra Vol. Proc. ICM III (1998), 645–656.

    Google Scholar 

  • Baker, E. K.: ‘Efficient heuristic algorithms for the weighted set covering problem’, Comput. Oper. Res. 8 (1981), 303–310.

    Article  Google Scholar 

  • Baker, E. K., and Fisher, M. L.: ‘Computational results for very large air crew scheduling problems’, OMEGA Internat. J. Management Sci. 19 (1981), 613–618.

    Article  Google Scholar 

  • Balas, E., and Martin, C. H.: ‘Pivot and complement: A heuristic for 0/1 programming’, Managem. Sci. 26 (1980), 86–96.

    MATH  MathSciNet  Google Scholar 

  • Baldick, R.: ‘A randomized heuristic for inequality-constrained mixed-integer programming’, Techn. Report Dept. Electrical and Computer Engin. Worcester Polytechnic Inst. (1992).

    Google Scholar 

  • Beale, E. M.L.: ‘Branch and bound methods for mathematical programming systems’, Ann. Discrete Math. 5 (1979), 201–219.

    MATH  MathSciNet  Google Scholar 

  • Beale, E. M. L., and Tomlin, J. A.:’ special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables’, in J. Lawerence (ed.): Proc. Fifth Internat. Conf. Oper. Res., Tavistock Publ., 1970, pp. 447–454.

    Google Scholar 

  • Beasley, J. E., and Chu, P. C.: ‘A genetic algorithm for the set covering problem’, Europ. J. Oper. Res. 194 (1996), 392–404.

    Article  Google Scholar 

  • Benichou, M., Gauthier, J. M., Girodet, P., Hehntges, G., Ribiere, G., and Vincent, O.: ‘Experiments in mixed integer linear programming’, Math. Program. 1 (1971), 76–94.

    Article  MATH  Google Scholar 

  • Benichou, M., Gauthier, J. M., Hehntges, G., and Ribiere, G.: ‘The efficient solution of large-scale linear programming problems-some algorithmic techniques and computational results’, Math. Program. 13 (1977), 280–322.

    Article  MATH  Google Scholar 

  • Bixby, R. E., Cook, W., Cox, A., and Lee, E. K.: ‘Parallel mixed integer programming’, Techn. Report Center Res. Parallel Computation, Rice Univ. CRPC-TR95554 (1995).

    Google Scholar 

  • Bixby, R. E., Cook, W., Cox, A., and Lee, E. K.: ‘Computational experience with parallel mixed integer programming in a distributed environment’, Ann. Oper. Res. 90 (1999), 19–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Bixby, R. E., and Lee, E. K.: ‘Solving a truck dispatching scheduling problem using branch-and-cut’, Oper. Res. 46 (1998), 355–367.

    MATH  Google Scholar 

  • Bixby, R. E., and Wagner, D. K.: ‘A note on detecting simple redundancies in linear systems’, Oper. Res. Lett. 6 (1987), 15–18.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonomi, E., and Lutton, J. L.: ‘The N-city traveling salesman problem: Statistical mechanics and the metropolis algorithm’, SIAM Rev. 26 (1984), 551–568.

    Article  MATH  MathSciNet  Google Scholar 

  • Borchers, B., and Mitchell, J. E.: ‘Using an interior point method in a branch and bound algorithm for integer programming’, Techn. Report Math. Sci. Rensselaer Polytech. Inst. 195 (March 1991), Revised July 7, 1992.

    Google Scholar 

  • Bradley, G. H., Hammer, P. L., and Wolsey, L.: ‘Coefficient reduction in 0–1 variables’, Math. Program. 7 (1975), 263–282.

    Article  MathSciNet  Google Scholar 

  • Brearley, A. L., Mitra, G., and Williams, H. P.: ‘Analysis of mathematical programming problems prior to applying the simplex method’, Math. Program. 5 (1975), 54–83.

    Article  MathSciNet  Google Scholar 

  • Breu, R., and Burdet, C. A.: ‘Branch and bound experiments in zero-one programming’, Math. Program. 2 (1974), 1–50.

    MATH  MathSciNet  Google Scholar 

  • Conn, A. R., and Cornuejols, G.: ‘A projection method for the uncapacitated facility location problem’, Techn. Report Graduate School Industr. Admin. Carnegie-Mellon Univ. 26-86-87 (1987).

    Google Scholar 

  • Crowder, H., Johnson, E. L., and Padberg, M.: ‘Solving large-scale zero-one linear programming problem’, Oper. Res. 31 (1983), 803–834.

    Article  MATH  Google Scholar 

  • Dakin, R. J.: ‘A tree search algorithm for mixed integer programming problems’, Computer J. 8 (1965), 250–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Dietrich, B., and Escudero, L.: ‘Coefficient reduction for knapsack-like constraints in 0/1 programs with variable upper bounds’, Oper. Res. Lett. 9 (1990), 9–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Driebeek, N. J.: ‘An algorithm for the solution of mixed integer programming problems’, Managem. Sci. 21 (1966), 576–587.

    Google Scholar 

  • Erlenkotter, D.: ‘A dual-based procedure for uncapacitated facility location’, Oper. Res. 26 (1978), 992–1009.

    MATH  MathSciNet  Google Scholar 

  • Fenelon, M.: ‘Branching strategies for MIP’, CPLEX (1991).

    Google Scholar 

  • Fisher, M. L., and Jaikumer, R.: ‘A generalized assignment heuristic for vehicle routing’, Networks 11 (1981), 109–124.

    MathSciNet  Google Scholar 

  • Forrest, J. J., Hirst, J. P.H., and Tomlin, J. A.: ‘Practical solution of large mixed integer programming problems with UMPIRE’, Managem. Sci. 20 (1974), 736–773.

    MATH  MathSciNet  Google Scholar 

  • Garey, M. R., and Johnson, D. S.: Computers and intractability–A guide to the theory of NP-completeness, Freeman, 1979.

    Google Scholar 

  • Gauthier, J. M., and Ribiere, G.: ‘Experiments in mixed integer programming using pseudo-costs’, Math. Program. 12 (1977), 26–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, D. E.: Genetic algorithms in search, optimization, and machine learning, Addison–Wesley, 1989.

    Google Scholar 

  • Guignard, M., and Spielberg, K.: ‘Logical reduction methods in zero-one programming’, Oper. Res. 29 (1981), 49–74.

    MATH  MathSciNet  Google Scholar 

  • Hoffman, K. L., and Padberg, M.: ‘Improving LP-representations of zero-one linear programs for branch-and-cut’, ORSA J. Comput. 3 (1991), 121–134.

    MATH  Google Scholar 

  • Hoffman, K. L., and Padberg, M.: ‘Solving airline crew-scheduling problems by branch-and-cut’, Managem. Sci. 39 (1992), 657–682.

    Google Scholar 

  • Ibarra, O. H., and Kim, C. E.: ‘Fast approximation algorithms for the knapsack and sum of subset problems’, J. ACM 22 (1975), 463–468.

    Article  MATH  MathSciNet  Google Scholar 

  • Kruskal, J. B.: ‘On the shortest spanning subtree of a graph and the traveling salesman problem’, Proc. Amer Math Soc. 7 (1956), 48–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuehn, A. A., and Hamburger, M. J.: ‘A heuristic program for locating warehouses’, Managem. Sci. 19 (1963), 643–666.

    Google Scholar 

  • Land, A. H., and Doig, A. G.: ‘An automatic method for solving discrete programming problems’, Econometrica 28 (1960), 497–520.

    Article  MATH  MathSciNet  Google Scholar 

  • Land, A. H., and Powell, S.: ‘Computer codes for problems of integer programming’, Ann. Discrete Math. 5 (1979), 221–269.

    MATH  MathSciNet  Google Scholar 

  • Lawler, E. L.: ‘Fast approximation algorithms for the knapsack problems’, Math. Oper. Res. 4 (1979), 339–356.

    MATH  MathSciNet  Google Scholar 

  • Lee, E. K., and Mitchell, J. E.: ‘Computational experience in nonlinear mixed integer programming’: The Oper. Res. Proc. 1996, Springer, 1996, pp. 95–100.

    Google Scholar 

  • Lee, E. K., and Mitchell, J. E.: ‘Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework’, in H. Frenk, and et al. (eds.): High Performance Optimization, Kluwer Acad. Publ., 2000, pp. 329–347 (Chap. 13).

    Google Scholar 

  • Lin, S., and Kernighan, B. W.: ‘An effective heuristic algorithm for the traveling salesman problem’, Oper. Res. 21 (1973), 498–516.

    MATH  MathSciNet  Google Scholar 

  • Lustig, I. J., Marsten, R. E., and Shanno, D. F.: ‘Interior point methods for linear programming: Computational state of the art’, ORSA J. Comput. 6, no. 1 (1994), 1–14 see also the following commentaries and rejoinder.

    MATH  MathSciNet  Google Scholar 

  • Manne, A. S.: ‘Plant location under economies of scale-decentralization and computation’, Managem. Sci. 11 (1964), 213–235.

    Google Scholar 

  • Mitra, G.: ‘Investigations of some branch and bound strategies for the solution of mixed integer linear programs’, Math. Program. 4 (1973), 155–170.

    Article  MATH  Google Scholar 

  • Nemhauser, G. L., and Wolsey, L. A.: Integer and combinatorial optimization, Wiley, 1988.

    Google Scholar 

  • Padberg, M., and Rinaldi, G.: ‘A branch-and-cut approach to a traveling salesman problem with side constraints’, Managem. Sci. 35 (1989), 1393–1412.

    MATH  MathSciNet  Google Scholar 

  • Padberg, M., and Rinaldi, G.: ‘A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems’, SIAM Rev. 33 (1991), 60–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Parker, R. G., and Rardin, R. L.: Discrete optimization, Acad. Press, 1988.

    Google Scholar 

  • Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M.: ‘An analysis of several heuristics for the traveling salesman problem’, SIAM J. Comput. 6 (1977), 563–581.

    Article  MATH  MathSciNet  Google Scholar 

  • Sahni, S.: ‘Approximate algorithms for the 0–1 knapsack problem’, J. ACM 22 (1975), 115–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Savelsbergh, M. W.P.: ‘Preprocessing and probing for mixed integer programming problems’, ORSA J. Comput. 6 (1994), 445–454.

    MATH  MathSciNet  Google Scholar 

  • de Silva, A., and Abramson, D.: ‘A parallel interior point method and its application to facility location problems’, Comput. Optim. Appl. 9 (1998), 249–273.

    Article  MATH  MathSciNet  Google Scholar 

  • Spielberg, K.: ‘Algorithms for the simple plant location problem with some side-conditions’, Oper. Res. 17 (1969), 85–111.

    MATH  Google Scholar 

  • Tomlin, J. A.: ‘An improved branch and bound method for integer programming’, Oper. Res. 19 (1971), 1070–1075.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Lee, E.K., Mitchell, J.E. (2001). Branch and price: Integer programming with column generation; Decomposition techniques for MILP: Lagrangian relaxation; Genetic algorithms; Integer linear complementary problem; Integer programming; Integer programming: Algebraic methods; Integer programming: Branch and cut algorithms; Integer programming: Cutting plane algorithms; Integer programming duality; Integer programming: Lagrangian relaxation; LCP: Pardalos–Rosen mixed integer formulation, Linear programming; Interior point methods; Mixed integer classification problems; Multi-objective integer linear programming; Multi-objective mixed integer programming; Multiparametric mixed integer linear programming; Parametric mixed integer nonlinear optimization; Set covering, packing and partitioning problems; Simplicial pivoting algorithms for integer programming; Stochastic integer programming: Continuity, stability, rates of convergence; Stochastic integer programs; Time-dependent traveling salesman problem INTEGER PROGRAMMING: BRANCH AND BOUND METHODS . In: Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_214

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_214

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics