Skip to main content

Synonyms

TCP-1 and Cct1

Historical Background

In the cell, the correct folding of many proteins depends on the function of preexisting ones known as Molecular Chaperones (for a review see Hartl and Hayer-Hartl 2009). These, were defined as proteins that bind to and stabilize an otherwise unstable conformation of another protein, and by controlling binding and release, facilitate its correct fate in vivo, be it folding, oligomeric assembly, transport to a particular subcellular compartment, or disposal by degradation. Molecular chaperones do not convey steric information specifying correct folding: instead, they prevent incorrect interactions within and between nonnative peptides, thus typically increasing the yield but not the rate of folding reactions.

Molecular chaperones are ubiquitous and comprise several protein families that are structurally unrelated (Hartl and Hayer-Hartl 2009). The Hsp70s and the Chaperonin families have been extensively studied. Hsp70homologs are widespread...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Brackley KI, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 2009;14:23–31.

    Article  PubMed  CAS  Google Scholar 

  • Broadley SA, Hartl FU. The role of molecular chaperones in human misfolding diseases. FEBS Lett. 2009;583:2647–53.

    Article  PubMed  CAS  Google Scholar 

  • Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR. The interaction network of the chaperonin CCT. EMBO J. 2008;27:1827–39.

    Article  PubMed  CAS  Google Scholar 

  • Doucey MA, Bender FC, Hess D, Hofsteenge J, Bron C. Caveolin-1 interacts with the chaperone complex TCP-1 and modulates its protein folding activity. Cell Mol Life Sci. 2006;63:7–8.

    Article  CAS  Google Scholar 

  • Gonçalves J, Nolasco S, Soares H. CCTalpha. AfCS Nat Molecule Pages. 2007. doi:10.1038/mp.a003968.01.

    Google Scholar 

  • Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. 2009;16:574–81.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H. Function and regulation of cytosolic molecular chaperone CCT. Vitam Horm. 2002;65:313–31.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Hynes G, Willison K. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem. 1995;230:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, Smyth MG, Carrascosa JL, Willison KR, Radermacher M, Steinbacher S, Valpuesta JM. 3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin. Nat Struct Biol. 1999;6:639–42.

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, Martín-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM. The ‘sequential allosteric ring’ mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J. 2001;20:4065–75.

    Article  PubMed  CAS  Google Scholar 

  • Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci. 2010;35:288–97.

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129:1201–13.

    Article  PubMed  CAS  Google Scholar 

  • Seixas C, Casalou C, Melo LV, Nolasco S, Brogueira P, Soares H. Subunits of the chaperonin CCT are associated with Tetrahymena microtubule structures and are involved in cilia biogenesis. Exp Cell Res. 2003;290:303–21.

    Article  PubMed  CAS  Google Scholar 

  • Seixas C, Cruto T, Tavares A, Gaertig J, Soares H. CCTalpha and CCTdelta chaperonin subunits are essential and required for cilia assembly and maintenance in Tetrahymena. PLoS ONE. 2010;5:e10704.

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci USA. 2010;107:1488–93.

    Article  PubMed  CAS  Google Scholar 

  • Stephens RE, Lemieux NA. Molecular chaperones in cilia and flagella: implications for protein turnover. Cell Motil Cytoskeleton. 1999;44:274–83.

    Article  PubMed  CAS  Google Scholar 

  • Valpuesta JM, Martín-Benito J, Gómez-Puertas P, Carrascosa JL, Willison KR. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 2002;529:11–6.

    Article  PubMed  CAS  Google Scholar 

  • Wagner CT, Lu IY, Hoffman MH, Sun WQ, Trent JD, Connor J. T-complex polypeptide-1 interacts with the erythrocyte cytoskeleton in response to elevated temperatures. J Biol Chem. 2004;279:16223–8.

    Article  PubMed  CAS  Google Scholar 

  • Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal. 2007;19:2417–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Soares, H., Nolasco, S., Gonçalves, J. (2012). CCTα. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0461-4_550

Download citation

Publish with us

Policies and ethics