Skip to main content

Transformation of Yeast Using Bioactive Beads With Surface-Immobilized Yeast Artificial Chromosomes

  • Protocol
YAC Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 349))

  • 731 Accesses

Abstract

Yeast artificial chromosomes (YACs) are useful cloning vectors with the capacity to carry large DNA inserts. The largest barrier using such large DNA molecules in transformation experiments has been their physical instability in a solution. We developed a new method for transforming yeast with chromosome-sized DNA. The method uses bioactive beads composed of calcium alginate to immobilize yeast chromosomal DNAs. Chromosomal DNA immobilized on bioactive beads is physically stable when compared with naked chromosomal DNAs. The bead-mediated transformation performed well, not only with respect to the transformation frequency, but also in successful transformation using split chromosomal DNA that exceeded 450 kb in size. In this chapter we introduce a new method for transforming yeast using bioactive beads. In conjunction with genomic YAC libraries and the yeast chromosome-splitting method, this technique will pave the way to stable and effective transfer of YACs into yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beggs, J. D. (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275, 104–109.

    Article  CAS  PubMed  Google Scholar 

  2. Hinnen, A., Hicks, J. B., and Fink, G. R. (1978) Transformation of yeast. Biotechnology 24, 337–341.

    Google Scholar 

  3. Hashimoto, H., Morikawa, H., Yamada, K., and Kimura, A. (1985) A novel method fortransformation of intact yeast cells by electroinjection of plasmid DNA. Appl. Microbiol. Biotechnol. 21, 336–339.

    Article  CAS  Google Scholar 

  4. Schiestl, R. H. and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346.

    Article  CAS  PubMed  Google Scholar 

  5. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  CAS  PubMed  Google Scholar 

  6. Vollrath, D., Davis, R. W., Connelly, C., and Hieter, P. (1988) Physical mapping of large DNA by chromosome fragmentation. Proc. Natl. Acad. Sci. USA 85, 6027–6031.

    Article  CAS  PubMed  Google Scholar 

  7. Widianto, D., Mukai, Y., Kim, K., Harashima, S., and Oshima, Y. (1996) One-step splitting of a chromosome in haploid cells of Saccharomyces cerevisiae and its effect on the cell proliferation. J. Ferm. Bioeng. 82, 199–204.

    Article  CAS  Google Scholar 

  8. Bauchwitz, R. and Costantini, F. (1998) YAC transgenesis: a study of conditions to protect YAC DNA from breakage and a protocol for transfection. Biochim. Biophys. Acta. 1401, 21–37.

    Article  CAS  PubMed  Google Scholar 

  9. Connelly, C., McCormick, M. K., Shero, J., and Hieter, P. (1991) Polyamines eliminate an extreme size bias against transformation of large yeast artificial chromosome DNA. Genomics 10, 10–16.

    Article  CAS  PubMed  Google Scholar 

  10. Mizukami, A., Nagamori, E., Takakura, Y., et al. (2003) Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA. Biotechniques 35, 734–740.

    CAS  PubMed  Google Scholar 

  11. Liu, H., Kawabe, A., Matsunaga, S., et al. (2004) Obtaining transgenic plants using the bioactive beads method. J. Plant Res. 117, 95–99.

    Article  CAS  PubMed  Google Scholar 

  12. Higashi, T., Nagamori, E., Sone, T., Matsunaga, S., and Fukui, K. (2004) A novel transfection method for mammalian cells using calcium alginate microbeads J. Bioscience Bioengineering 97, 191–195.

    CAS  Google Scholar 

  13. Sone, T., Nagamori, E., Ikeuchi, T., et al. (2002) A novel genedelivery system in plants with calcium alginatemicro-beads. J. Biosci. Bioeng. 94, 87–91.

    CAS  PubMed  Google Scholar 

  14. McCormick, M. K., Shero, J., Connelly, C., Antonarakis, S., and Hieter, P. (1990) Methods forcloning large DNA segments as artificial chromosomesin S. cerevisiae. Techniques 2, 65–71.

    CAS  Google Scholar 

  15. Burgers, P. M. and Percival, K. J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa NJ

About this protocol

Cite this protocol

Kawakami, S., Harashima, S., Kobayashi, A., Fukui, K. (2006). Transformation of Yeast Using Bioactive Beads With Surface-Immobilized Yeast Artificial Chromosomes. In: MacKenzie, A. (eds) YAC Protocols. Methods in Molecular Biology™, vol 349. Humana Press. https://doi.org/10.1385/1-59745-158-4:61

Download citation

  • DOI: https://doi.org/10.1385/1-59745-158-4:61

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-612-2

  • Online ISBN: 978-1-59745-158-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics