Skip to main content

Quantum Dot-Encoded Beads

  • Protocol
NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 303))

Abstract

Multicolor optical coding for biological assays has been achieved by embedding semiconductor quantum dots into mesoporous and macroporous beads at precisely controlled ratios. Owing to their novel optical properties such as size-tunable emission and simultaneous excitation, quantum dots are ideal fluorophores for wavelength-and-intensity multiplexing. Kinetics study reveals that quantum dot doping of porous silica and polystyrene beads can be completed from seconds to minutes. The use of 10 intensity levels and six colors could theoretically code 1 million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the quantum dot-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  2. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  3. Dickinson, T. A., Michael, K. L., Kauer, J. S., and Walt, D. R. (1999) Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 71, 2192–2198.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, H. A., Hoyer, M., Philbert, M. A., and Kopelman, R. (1999) Optical nanosensors for chemical analysis inside single living cells: fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem. 71, 4831–4836.

    Article  PubMed  CAS  Google Scholar 

  5. Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S., and Manz, A. (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897.

    Article  PubMed  CAS  Google Scholar 

  6. Ramsey, J. M., Jacobson, S. C., and Knapp, M. R. (1995) Microfabricated chemical measurement systems. Nat. Med. 1, 1093–1096.

    Article  PubMed  CAS  Google Scholar 

  7. Woolley, A. T. and Mathies, R. A. (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. USA 91, 11,348–11,352.

    Article  PubMed  CAS  Google Scholar 

  8. Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715.

    Article  CAS  Google Scholar 

  9. Hines, M. A. and Guyot-Sionnest, P. (1996) Synthesis of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. B 100, 468–471.

    Article  CAS  Google Scholar 

  10. Peng, X. G., Schlamp, M. C., Kadavanich, A. V., and Alivisatos, A. P. (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029.

    Article  CAS  Google Scholar 

  11. Peng, Z. A. and Peng, X. G. (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183, 184.

    Article  PubMed  CAS  Google Scholar 

  12. Qu, L., Peng, Z. A., and Peng, X. (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333–337.

    Article  CAS  Google Scholar 

  13. Han, M. Y., Gao, X. H, Su, J. Z., and Nie, S. M. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, J., Iannone, M. A., Li, M. S., Taylor, J. D., Rivers, P., Nelsen, A. J., Slentz-Kesler, K. A., Roses, A., and Weiner, M. P. (2000) A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10, 549–557.

    Article  PubMed  CAS  Google Scholar 

  15. Fulton, R. J., McDade, R. L., Smith, P. L., Kienker, L. J., and Kettman, J. R. Jr. (1997) Advanced multiplexed analysis with the FlowMetrix™ system. Clin. Chem. 43, 1749–1756.

    PubMed  CAS  Google Scholar 

  16. Steemers, F. J., Ferguson, J. A., and Walt, D. R. (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 18, 91–94.

    Article  PubMed  CAS  Google Scholar 

  17. Ferguson, J. A., Boles, T. C., Adams, C. P., and Walt, D. R. (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 14, 1681–1684.

    Article  PubMed  CAS  Google Scholar 

  18. Ferguson, J. A., Steemers, F. J., and Walt, D. R. (2000) High-density fiber-optic DNA random microsphere arrays. Anal. Chem. 72, 5618–5624.

    Article  PubMed  CAS  Google Scholar 

  19. Van Oosterhout, M. F., Prinzen, F. W., Sakurada, S., Glenny, R. W., and Hales, J. R., (1998) Fluorescent microspheres are superior to radioactive microspheres in chronic blood flow measurements. Am. J. Physiol. 275, H110–H115.

    PubMed  Google Scholar 

  20. Bhalgat, M. K., Haugland, R. P., Pollack, J. S., Swan, S., and Haugland, R. P. (1998) Green-and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry. J. Immunol. Methods 219, 57–68.

    Article  PubMed  CAS  Google Scholar 

  21. Hall, M., Kazakova, I., and Yao, Y. M. (1999) High sensitivity immunoassays using particulate fluorescent labels. Anal. Biochem. 272, 165–170.

    Article  PubMed  CAS  Google Scholar 

  22. Zijlmans, H. J. M. A. A., Bonnet, J., Burton, J., Kardos, K., Vail, T., Niedbala, R. S., and Tanke, H. J. (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36.

    Article  PubMed  CAS  Google Scholar 

  23. Kurner, J. M., Klimant, I., Krause, C., Preu, H., Kunz, W., and Wolfbeis, O. S. (2001) Inert phosphorescent nanospheres as markers for optical assays. Bioconj. Chem. 12, 883–889.

    Article  CAS  Google Scholar 

  24. Sondi, I., Siiman, O., Koester, S., and Matijevic, E. (2000) Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates. Langmuir 16, 3107–3118.

    Article  CAS  Google Scholar 

  25. Chen, Y. F., Tianhao, J., and Rosenzweig, Z. (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett. 3, 581–584.

    Article  CAS  Google Scholar 

  26. Schultz, S., Smith, D. R., Mock, J. J., and Schultz, D. A. (2000) Single target molecule detection with non-bleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 97, 996–1001.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Q. C., Svec, F., and Frechet, J. M. J. (1994) Fine control of the porous structure and chromatographic properties of monodisperse macroporous poly (styrene-codivinylbenzene) beads prepared using polymer porogens. J. Polym. Sci. Pol. Chem. 32,13, 2577–2588.

    Article  CAS  Google Scholar 

  28. Cheng, C. M., Micale, F. J., Vanderhoff, J. W., and El-Aasser, M. S. (1992) Synthesis and characterization of monodisperse porous polymer particles. J. Polym. Sci. Pol. Chem. 30, 235–244.

    Article  CAS  Google Scholar 

  29. Iler, R. K. and Kirkland, J. J. (1978) Process for manufacture of macroporous microspheroids. US patent no. 4,105,426.

    Google Scholar 

  30. Hermanson, G. T. (1996) Bioconjugate Techniques, Academic, New York.

    Google Scholar 

  31. Gao, X. H. and Nie, S. M. (2003) Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B, 107, 11,575–11,578.

    Article  CAS  Google Scholar 

  32. Deniz, A. A., Laurence, T. A., Dahan, M., Chemla, D. S., Schultz, P. G., and Weiss, S. (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu. Rev. Phys. Chem. 52, 233–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Mingyong Han (Department of Materials Science, National University of Singapore) for help with the microbead synthesis and for fruitful discussions. This work was supported in part by the National Institutes of Health, the Department of Energy, and the Coulter Translational Research Program at Georgia Tech and Emory University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Gao, X., Nie, S. (2005). Quantum Dot-Encoded Beads. In: Rosenthal, S.J., Wright, D.W. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology™, vol 303. Humana Press. https://doi.org/10.1385/1-59259-901-X:061

Download citation

  • DOI: https://doi.org/10.1385/1-59259-901-X:061

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-276-6

  • Online ISBN: 978-1-59259-901-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics