Skip to main content

Reticulocyte Lysate as a Model System to Study Endoplasmic Reticulum Membrane Protein Degradation

  • Protocol
Ubiquitin-Proteasome Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

Summary

Recent studies have revealed that rabbit reticulocyte lysate (RRL) efficiently reconstitutes endoplasmic reticulum-associated degradation (ERAD) of mutant and misfolded membrane proteins. When supplemented with canine pancreas microsomal membranes, the RRL system faithfully carries out ER targeting, translocation, glycosylation, and membrane integration events and therefore provides a ready source of 35S-labeled protein with defined transmembrane topology. These substrates can be rapidly isolated in native ER membranes which, when incubated in RRL lacking exogenous hemin, are degraded in an ATP-dependent manner by the ubiquitin-proteasome pathway. Because the newly translated protein is the only source of radiolabel, degradation can be followed to its end state by conversion into trichloroacetic acid (TCA)-soluble peptide fragments. A particularly useful aspect of this system is that both membrane-associated and cytosolic components are amenable to biochemical and pharmacological manipulation. Here we describe techniques for preparing translation- and degradation-competent RRL, affinity depletion, identification of cytosolic factors involved in degrading the cystic fibrosis transmembrane conductance regulator (CFTR), and reconstitution of ERAD by add-back of purified recombinant proteins. These techniques provide a powerful tool for dissecting components involved in ubiquitination, degradation, and in particular, extraction of transmembrane ERAD substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodsky, J. and McCracken, A. (1997) ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 7, 151–155.

    Article  PubMed  CAS  Google Scholar 

  2. Kostova, Z. and Wolf, D. H. (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22, 2309–2317.

    Article  PubMed  CAS  Google Scholar 

  3. Sommer, T. and Wolf, D. (1997) Endoplasmic reticulum: reverse protein flow of no return. FASEB J. 11, 1227–1233.

    PubMed  CAS  Google Scholar 

  4. Kopito, R. (1997) ER quality control: the cytoplasmic connection. Cell 88, 427–430.

    Article  PubMed  CAS  Google Scholar 

  5. Hampton, R. Y. (2002) ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14, 476–482.

    Article  PubMed  CAS  Google Scholar 

  6. Lippincott-Schwartz, J., Bonifacino, J., Yuan, L., and Klausner, R. (1988) Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220.

    Article  PubMed  CAS  Google Scholar 

  7. McCracken, A. and Brodsky, J. (2003) Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD) BioEssays 25, 868–877.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson, C., Farmery, M., and Bulleid, N. (2000) Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of the major histocompatibility complex class I heavy chain. J. Biol. Chem. 275, 21224–21232.

    Article  PubMed  CAS  Google Scholar 

  9. Taxis, C., Hitt, R., Park, S. H., Deak, P. M., Kostova, Z., and Wolf, D. H. (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903–35913.

    Article  PubMed  CAS  Google Scholar 

  10. Horwich, A., Weber-Ban, E., and Finley, D. (1999) Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96, 11033–11040.

    Article  PubMed  CAS  Google Scholar 

  11. Plemper, R. and Wolf, D. (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biol. Sci. 24, 266–270.

    Article  CAS  Google Scholar 

  12. Jarosch, E., Taxis, C., Volkwein, C., et al. (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4, 134–139.

    Article  PubMed  CAS  Google Scholar 

  13. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  14. Gusarova, V., Caplan, A. J., Brodsky, J. L., and Fisher, E. A. (2001) Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J. Biol. Chem. 276, 24891–24900.

    Article  PubMed  CAS  Google Scholar 

  15. Qu, D., Teckman, J., Omura, S., and Perlmutter, D. (1996) Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271, 22971–22975.

    Google Scholar 

  16. Xiong, X., Chong, E., and Skach, W. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2616–2624.

    Article  PubMed  CAS  Google Scholar 

  17. Sato, S., Ward, C., and Kopito, R. (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem. 273, 7189–7192.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson, R., Allen, A. J., Oliver, J., Brookman, J. L., High, S., and Bulleid, N. J. (1995) The translocation, folding, assembly, and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized cells. Biochem. J. 307, 679–687.

    PubMed  CAS  Google Scholar 

  19. Lu, Y., Turnbull, I., Bragin, A., Carveth, K., Verkman, A., and Skach, W. (2000) Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973–2985.

    PubMed  CAS  Google Scholar 

  20. Kobilka, B. (1990) The role of cytosolic and membrane factors in processing of the human beta-2 adrenergic receptor following translocation and glycosylation in a cell free system. J. Biol. Chem. 265, 7610–7618.

    PubMed  CAS  Google Scholar 

  21. Brodsky, J. L., Hamamoto, S., Feldheim, D., and Schekman, R. (1993) Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J. Cell Biol. 120, 95–102.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, R. and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74.

    Article  PubMed  CAS  Google Scholar 

  23. Walter, P. and Blobel, G. (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93.

    Article  PubMed  CAS  Google Scholar 

  24. Melton, D. A., Krieg, P. A., Bebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacterial SP6 promoter. Nucl. Acids Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  25. Gilmore, R., Blobel, G., and Walter, P. (1982) Protein translocation across the endoplasmic reticulum. I Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469.

    Article  PubMed  CAS  Google Scholar 

  26. Andrews, D. W., Lauffer, L., Walter, P., and Lingappa, V. R. (1989) Evidence for a two-step mechanism involved in assembly of functional signal recognition particle receptor. J. Cell Biol. 108, 797–810.

    Article  PubMed  CAS  Google Scholar 

  27. Walter, P. and Blobel, G. (1981) Translocation of proteins across the endoplasmic reticulum II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 551–556.

    Article  PubMed  CAS  Google Scholar 

  28. Hoffman, L. and Rechsteiner, M. (1996) Nucleotidase activities of the 26 S proteasome and its regulatory complex. J. Biol. Chem. 271, 32538–32545.

    Article  PubMed  CAS  Google Scholar 

  29. Kaderbhai, M., Harding, V., Karim, A., Austen, B., and Kaderbhai, N. (1995) Sheep pancreatic microsomes as an alternative to the dog source for studying protein translocation. Biochem. J. 15, 57–61.

    Google Scholar 

  30. Yan, J. X., Wait, R., Berkelman, T., et al. (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666–3672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Carlson, E., Bays, N., David, L., Skach, W.R. (2005). Reticulocyte Lysate as a Model System to Study Endoplasmic Reticulum Membrane Protein Degradation. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:185

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics