Skip to main content

Assays of Proteasome-Dependent Cleavage Products

  • Protocol
Ubiquitin-Proteasome Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

  • 3236 Accesses

Summary

The degradation of misfolded, aged, or no longer needed cytosolic proteins depends largely on the ubiquitin-proteasome system. Proteasomes degrade their substrates into fragments of 3–20 amino acids. Human 20S proteasomes can be purified from human erythrocytes by batch adsorption to DEAE-cellulose, ammonium sulfate precipitation, anion-exchange fast protein liquid chromatography (FPLC), and glycerol density gradient ultracentrifugation. 20S proteasomes purified by this method are suitable for the in vitro digestion of synthetic peptides as well as full-length proteins. The degradation products produced by proteasomes are separated by reversed-phase HPLC using an acetonitrile gradient. The obtained fractions are further analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation, which allows a quantitative analysis of the digestion products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kisselev, A. F., Akopian, T. N., Woo, K. M., and Goldberg, A. L. (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371.

    Article  PubMed  CAS  Google Scholar 

  2. Rock, K. L. and Goldberg, A. L. (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779.

    Article  PubMed  CAS  Google Scholar 

  3. Groll, M., Ditzel, L., Lowe, J., et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471.

    Article  PubMed  CAS  Google Scholar 

  4. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.

    Article  PubMed  CAS  Google Scholar 

  5. Groettrup, M., Ruppert, T., Kuehn, L., et al. (1995) The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. J. Biol. Chem. 270, 23808–23815.

    Article  PubMed  CAS  Google Scholar 

  6. Eleuteri, A. M., Kohanski, R. A., Cardozo, C., and Orlowski, M. (1997) Bovine spleen multicatalytic proteinase complex (proteasome): replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J. Biol. Chem. 272, 11824–11831.

    Article  PubMed  CAS  Google Scholar 

  7. Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H., and Kloetzel, P. M. (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J. Exp. Med. 179, 901–909.

    Article  PubMed  CAS  Google Scholar 

  8. Gaczynska, M., Rock, K. L., and Goldberg, A. L. (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267.

    Article  PubMed  CAS  Google Scholar 

  9. Cardozo, C. and Kohanski, R. A. (1998) Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the “immunoproteasome.” J. Biol. Chem. 273, 16764–16770.

    Article  PubMed  CAS  Google Scholar 

  10. Sijts, A. J., Standera, S., Toes, R. E., et al. (2000) MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 164, 4500–4506.

    PubMed  CAS  Google Scholar 

  11. Sijts, A. J., Ruppert, T., Rehermann, B., Schmidt, M., Koszinowski, U., and Kloetzel, P. M. (2000) Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J. Exp. Med. 191, 503–514.

    Article  PubMed  CAS  Google Scholar 

  12. van Hall, T., Sijts, A., Camps, M., et al. (2000) Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J. Exp. Med. 192, 483–494.

    Article  PubMed  Google Scholar 

  13. Schwarz, K., van den, B. M., Kostka, S., et al. (2000) Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 alpha/beta, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J. Immunol. 165, 768–778.

    PubMed  CAS  Google Scholar 

  14. Morel, S., Levy, F., Burlet-Schiltz, O., et al. (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117.

    Article  PubMed  CAS  Google Scholar 

  15. Nussbaum, A. K., Kuttler, C., Tenzer, S., and Schild, H. (2003) Using the World Wide Web for predicting CTL epitopes. Curr. Opin. Immunol. 15, 69–74.

    Article  PubMed  CAS  Google Scholar 

  16. Ayyoub, M., Stevanovic, S., Sahin, U., et al. (2002) Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J. Immunol. 168, 1717–1722.

    PubMed  CAS  Google Scholar 

  17. Kessler, J. H., Beekman, N. J., Bres-Vloemans, S. A., et al. (2001) Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med. 193, 73–88.

    Article  PubMed  CAS  Google Scholar 

  18. Emmerich, N. P., Nussbaum, A. K., Stevanovic, S., et al. (2000) The human 26 S and 20 S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J. Biol. Chem. 275, 21140–21148.

    Article  PubMed  CAS  Google Scholar 

  19. Toes, R. E., Nussbaum, A. K., Degermann, S., et al. (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Kuttler, C., Nussbaum, A. K., Dick, T. P., Rammensee, H. G., Schild, H., and Hadeler, K. P. (2000) An algorithm for the prediction of proteasomal cleavages. J. Mol. Biol. 298, 417–429.

    Article  PubMed  CAS  Google Scholar 

  21. Nussbaum, A. K., Kuttler, C., Hadeler, K. P., Rammensee, H. G., and Schild, H. (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53, 87–94.

    Article  PubMed  CAS  Google Scholar 

  22. Kesmir, C., Nussbaum, A. K., Schild, H., Detours, V., and Brunak, S. (2002) Prediction of proteasome cleavage motifs by neural networks. Prot. Eng. 15, 287–296.

    Article  CAS  Google Scholar 

  23. Holzhutter, H. G., Frommel, C., and Kloetzel, P. M. (1999) A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. J. Mol. Biol. 286, 1251–1265.

    Article  PubMed  CAS  Google Scholar 

  24. Stevanovic, S. and Jung, G. (1993) Multiple sequence analysis: pool sequencing of synthetic and natural peptide libraries. Anal. Biochem. 212, 212–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft to H. S. (Schi301/2-2, Schi301/2-3 and SFB 510, C1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Tenzer, S., Schild, H. (2005). Assays of Proteasome-Dependent Cleavage Products. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:097

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:097

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics