Skip to main content

Drug-to-Antibody Ratio (DAR) and Drug Load Distribution by LC-ESI-MS

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1045))

Abstract

This chapter describes an LC-ESI-MS method for the DAR and drug load distribution analysis that is suitable for lysine-linked ADCs. The ADC sample is desalted using a reversed-phase LC column with an acetonitrile gradient prior to online MS analysis. The MS spectrum is processed (deconvoluted) and converted to a series of zero charge state masses that corresponds to the increasing number of drugs in the ADC. Integration of the mass peak area allows the calculation of the DAR and drug load distribution of ADCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laguzza BC, Nichols CL et al (1989) New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation and representative in vivo activity. J Med Chem 32:548–555

    Article  PubMed  CAS  Google Scholar 

  2. Greenfield RS, Kaneko T et al (1990) Evaluation in vitro of Adriamycin immunoconjugates synthesized using an acid-sensitive hydrazine linker. Cancer Res 50:6600–6607

    PubMed  CAS  Google Scholar 

  3. Hudecz F, Garnett MC et al (1992) The influence of synthetic conditions on the stability of methotrexate-monoclonal antibody conjugates determined by reversed phase high performance liquid chromatography. Biomed Chromatogr 6:128–132

    Article  PubMed  CAS  Google Scholar 

  4. Chari RV, Martell BA et al (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52:127–131

    PubMed  CAS  Google Scholar 

  5. Willner D, Trail PA et al (1993) (6-Maleimidocaproyl)hydrazine of doxorubicin—new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjug Chem 4:521–527

    Article  PubMed  CAS  Google Scholar 

  6. Hinman LM, Hamann PR et al (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins; a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342

    PubMed  CAS  Google Scholar 

  7. Chari RV, Jackel KA et al (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res 55:44079–44084

    Google Scholar 

  8. Moran J (2002) Presentation at the 224th American Chemical Society National Meeting, Boston, MA; 18–22 August 2002

    Google Scholar 

  9. Hamblett KJ, Senter PD et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  PubMed  CAS  Google Scholar 

  10. Wakankar A, Chen Y et al (2011) Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 3(2):161–172

    Article  PubMed  Google Scholar 

  11. McDonagh CF, Turcott E et al (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19:299–307

    Article  PubMed  CAS  Google Scholar 

  12. Wang L, Amphlett G et al (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14:436–446

    Google Scholar 

  13. Lazar AC, Wang L et al (2005) Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom 19:1806–1814

    Article  PubMed  CAS  Google Scholar 

  14. Junutula JR, Flagella KM et al (2010) Engineered thiotrastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778

    Article  PubMed  CAS  Google Scholar 

  15. Xu K, Liu L et al (2011) Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography–mass spectrometry. Anal Biochem 412:56–66

    Article  PubMed  CAS  Google Scholar 

  16. Siegel MM, Hollander IJ et al (1991) Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator and conjugated drug content. Anal Chem 63:2470–2481

    Article  PubMed  CAS  Google Scholar 

  17. Quiles S, Raisch KP et al (2010) Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. J Med Chem 53:586–594

    Article  PubMed  CAS  Google Scholar 

  18. Safavy A, Bonner JA et al (2003) Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery. Bionconjug Chem 14:302–310

    Article  CAS  Google Scholar 

  19. Valliere-Douglass JF, McFee WA, Salas-Solano O (2012) Native intact mass determination of antibodies conjugated with monomethyl Auristatin E and F at interchain cysteine residues. Anal Chem 84:2843–2849

    Article  PubMed  CAS  Google Scholar 

  20. Jiang X, Song A et al (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 10:101–111

    Article  PubMed  CAS  Google Scholar 

  21. Harris RJ (1995) Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J Chromatogr A 705:129–134

    Article  PubMed  CAS  Google Scholar 

  22. Sun MM, Beam KS et al (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290

    Article  PubMed  CAS  Google Scholar 

  23. Duchateau ALL, Munsters BHM et al (1991) Selection of buffers and of an ion-pairing agent for thermospray liquid chromatographic–mass spectrometric analysis of ionic compounds. J Chromatogr A 552:605–612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pat Rancatore, Richard Seipert, Boyan Zhang, and Andrea Ji for comments and help in preparing this review.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Basa, L. (2013). Drug-to-Antibody Ratio (DAR) and Drug Load Distribution by LC-ESI-MS. In: Ducry, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 1045. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-541-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-541-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-540-8

  • Online ISBN: 978-1-62703-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics