Skip to main content

Kinetic Analysis of Aggregation Data

  • Protocol
  • First Online:
Tandem Repeats in Genes, Proteins, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1017))

Abstract

Aggregation of repeat-containing proteins is associated with neurodegenerative disorders; a specific example is the established link between expansion of the polyglutamine domain in huntingtin and the appearance of nuclear inclusions in Huntington’s disease. This connection between aggregation and pathology has motivated numerous investigations into the kinetics of aggregation. Quantitative analysis of kinetic data is needed both for comparative purposes (e.g., to compare the effect of different compounds on aggregation kinetics) and for mechanistic insight. Here we describe some analytical equations that can be used to model aggregation data and demonstrate appropriate and simple methods for extracting valid model parameters by fitting equations to kinetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen SM, Ferrone FA, Wetzel R (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99(18):11884–11889. doi:10.1073/Pnas.182276099

    Article  PubMed  CAS  Google Scholar 

  2. Bhattacharyya AM, Thakur AK, Wetzel R (2005) Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 102(43):15400–15405. doi:10.1073/Pnas.0501651102

    Article  PubMed  CAS  Google Scholar 

  3. Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R (2011) Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 18(3):328–336. doi:10.1038/Nsmb.1992

    Article  PubMed  CAS  Google Scholar 

  4. Ellisdon AM, Pearce MC, Bottomley SP (2007) Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 368(2):595–605. doi:10.1016/J.Jmb.2007.02.058

    Article  PubMed  CAS  Google Scholar 

  5. Bernacki JP, Murphy RM (2011) Length-dependent aggregation of uninterrupted polyalanine peptides. Biochemistry 50(43):9200–9211. doi:10.1021/Bi201155g

    Article  PubMed  CAS  Google Scholar 

  6. Chen YD, Bjornson K, Redick SD, Erickson HP (2005) A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J 88(1):505–514. doi:10.1529/Biophysj.104.044149

    Article  PubMed  CAS  Google Scholar 

  7. Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state. Biophys J 81(3):1805–1822

    Article  PubMed  CAS  Google Scholar 

  8. Ruschak AM, Miranker AD (2007) Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc Natl Acad Sci USA 104(30):12341–12346. doi:10.1073/Pnas.0703306104

    Article  PubMed  CAS  Google Scholar 

  9. Brummitt RK, Nesta DP, Chang LQ, Kroetsch AM, Roberts CJ (2011) Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci 100(6):2104–2119. doi:10.1002/Jps.22447

    Article  PubMed  CAS  Google Scholar 

  10. Andrews JM, Roberts CJ (2007) A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B 111(27):7897–7913. doi:10.1021/Jp070212j

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Roberts CJ (2009) Lumry-Eyring nucleated-polymerization model of protein aggregation kinetics. 2. Competing growth via condensation and chain polymerization. J Phys Chem B 113(19):7020–7032. doi:10.1021/Jp8083088

    Article  PubMed  CAS  Google Scholar 

  12. Bernacki JP, Murphy RM (2009) Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 96(7):2871–2887. doi:10.1016/J.Bpj.2008.12.3903

    Article  PubMed  CAS  Google Scholar 

  13. Dubay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM, Vendruscolo M (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 341(5):1317–1326. doi:10.1016/J.Jmb.2004.06.043

    Article  PubMed  CAS  Google Scholar 

  14. Colby DW, Cassady JP, Lin GC, Ingram VM, Wittrup KD (2006) Stochastic kinetics of intracellular huntingtin aggregate formation. Nat Chem Biol 2(6):319–323. doi:10.1038/Nchembio792

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40(20):6036–6046

    Article  PubMed  CAS  Google Scholar 

  16. Koo BW, Hebda JA, Miranker AD (2008) Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide. Protein Eng Des Sel 21(3):147–154. doi:10.1093/Protein/Gzm076

    Article  PubMed  CAS  Google Scholar 

  17. Pedersen JS, Dikov D, Otzen DE (2006) N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon. Bio-chemistry 45(48):14503–14512. doi:10.1021/ Bi061228n

    Article  PubMed  Google Scholar 

  18. Morris AM, Watzky MA, Agar JN, Finke RG (2008) Fitting neurological protein aggregation kinetic data via a 2-step, Minimal/”Ockham’s Razor” model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry 47(8):2413–2427. doi:10.1021/Bi701899y

    Article  PubMed  CAS  Google Scholar 

  19. Necula M, Kuret J (2004) A static laser light scattering assay for surfactant-induced tau fibrillization. Anal Biochem 333(2):205–215. doi:10.1016/J.Ab.2004.05.044

    Article  PubMed  CAS  Google Scholar 

  20. Chirita CN, Congdon EE, Yin HS, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Bio-chemistry 44(15):5862–5872. doi:10.1021/ Bi0500123

    Article  PubMed  CAS  Google Scholar 

  21. Ferrone F (1999) Analysis of protein aggregation kinetics. Meth Enzymol 309:256–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant CBET-085 2278 from the National Science Foundation. The author thanks Dennis Yang for carefully reading a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Murphy, R.M. (2013). Kinetic Analysis of Aggregation Data. In: Hatters, D., Hannan, A. (eds) Tandem Repeats in Genes, Proteins, and Disease. Methods in Molecular Biology, vol 1017. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-438-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-438-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-437-1

  • Online ISBN: 978-1-62703-438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics