Skip to main content

Evaluation of Antibody-Dependent Cell Cytotoxicity Using Lactate Dehydrogenase (LDH) Measurement

  • Protocol
  • First Online:
Book cover Glycosylation Engineering of Biopharmaceuticals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 988))

Abstract

In order to improve therapeutic antibodies efficacy in cancer patients, several strategies were developed. One of these strategies consists in the enhancement of effector functions. Antibody-dependent cellular cytotoxicity (ADCC) was shown to mediate the activity of several therapeutic antibodies through interaction of the constant fragment (Fc) with immune cells. The interactions of Fc fragment can be modulated by engineering through modifications of the carbohydrate moieties or through modifications of some critical amino acids for its binding. Such modifications have to be studied in an in vitro assay to evaluate their impact on the regulation of effector functions. Here, we described a method to evaluate ADCC using a nonradioactive assay based on the measurement of lactate dehydrogenase (LDH) release. NK cells were purified by negative immunomagnetic selection and used as effector cells to trigger ADCC against specific target tumor cells. The LDH release measurement from lysed cells is performed after 4 h incubation. This method can replace the 51Cr release assay since it is less restrictive and highly sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glennie MJ, French RR, Cragg MS, Taylor RP (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44:3823–3837

    Article  PubMed  CAS  Google Scholar 

  2. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 8:140–174

    Article  PubMed  CAS  Google Scholar 

  3. Oflazoglu E, Audoly LP (2010) Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MAbs 2:14–19

    Article  PubMed  Google Scholar 

  4. Galizia G, Lieto E, De Vita F, Orditura M, Castellano P, Troiani T et al (2007) Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 26:3654–3660

    Article  PubMed  CAS  Google Scholar 

  5. Pescovitz MD (2006) Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant 6:859–866

    Article  PubMed  CAS  Google Scholar 

  6. Ravandi F, O’Brien S (2005) Alemtuzumab. Expert Rev Anticancer Ther 5:39–51

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe M, Wallace PK, Keler T, Deo YM, Akewanlop C, Hayes DF (1999) Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat 53:199–207

    Article  PubMed  CAS  Google Scholar 

  8. Correia IR (2010) Stability of IgG isotypes in serum. MAbs 2:221–232

    Article  PubMed  Google Scholar 

  9. Yoo EM, Yu LJ, Wims LA, Goldberg D, Morrison SL (2010) Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines. MAbs 2:320–334

    Article  PubMed  Google Scholar 

  10. Liu XY, Pop LM, Vitetta ES (2008) Engineering therapeutic monoclonal antibodies. Immunol Rev 222:9–27

    Article  PubMed  CAS  Google Scholar 

  11. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  PubMed  CAS  Google Scholar 

  12. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  PubMed  CAS  Google Scholar 

  13. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  PubMed  CAS  Google Scholar 

  14. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  PubMed  CAS  Google Scholar 

  15. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S et al (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113:3716–3725

    Article  PubMed  CAS  Google Scholar 

  16. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30:356–362

    Article  PubMed  CAS  Google Scholar 

  17. Bryceson YT, Chiang SC, Darmanin S, Fauriat C, Schlums H, Theorell J et al (2011) Molecular mechanisms of natural killer cell activation. J Innate Immun 3:216–226

    Article  PubMed  CAS  Google Scholar 

  18. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    Article  PubMed  CAS  Google Scholar 

  19. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  PubMed  CAS  Google Scholar 

  20. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 103:4005–4010

    Article  PubMed  CAS  Google Scholar 

  21. Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S et al (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa.J Mol Biol 336:1239–1249

    Article  PubMed  CAS  Google Scholar 

  22. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  PubMed  CAS  Google Scholar 

  23. Beum PV, Lindorfer MA, Taylor RP (2008) Within peripheral blood mononuclear cells, antibody-dependent cellular cytotoxicity of rituximab-opsonized Daudi cells is promoted by NK cells and inhibited by monocytes due to shaving. J Immunol 181:2916–2924

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Broussas, M., Broyer, L., Goetsch, L. (2013). Evaluation of Antibody-Dependent Cell Cytotoxicity Using Lactate Dehydrogenase (LDH) Measurement. In: Beck, A. (eds) Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology, vol 988. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-327-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-327-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-326-8

  • Online ISBN: 978-1-62703-327-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics